
Learning Online Network with CAPA

Author’s Tutorial And Manual

17th August 2005

LON-CAPA Group

Michigan State University

1

CONTENTS 2

Contents

1 Introduction to LON-CAPA 4
1.1 About This Manual . 4
1.2 Login as Course Author . 4
1.3 Author Remote Control . 5

2 Creating Content Using LON-CAPA 6
2.1 Description of the Construction Space . 6
2.2 How to Create New Content Pages . 6
2.3 How to Edit Existing Content Pages . 7
2.4 Creating Online Problems Using LON-CAPA 8
2.5 Problem Types . 8
2.6 Foils . 8

2.6.1 Radio Response Problems . 8
2.6.2 Option Response Problems . 8
2.6.3 String Response Problems . 9
2.6.4 Numerical Response Problems . 9
2.6.5 Formula Response Problems . 9

2.7 Creating Radio Response Problems . 10
2.7.1 Randomization . 12

2.8 Option Response Problems . 12
2.8.1 Option Response Problems with Concept Groups 12
2.8.2 Example: Concept Group . 13
2.8.3 Example: Matching Problem . 13
2.8.4 Creating Option Problems . 14
2.8.5 Simple Option Response: No Concept Groups 15

2.9 Creating a String Response Problem . 15
2.10 Creating Numerical Response and Formula Response Problems 17
2.11 Dynamically Generated Plots . 17
2.12 Specifying Curves to Plot . 21
2.13 Color Selection . 23
2.14 General Problem Editing . 24

2.14.1 Adding Picture . 24

3 Publishing Your Resources 24
3.1 What is Metadata? . 24
3.2 Publishing A Resource . 25

4 Creating A Course: Maps and Sequences 27
4.1 Creating Sequences . 27
4.2 Creating a Simple .sequence With The Simple Editor 28
4.3 Creating a Simple .sequence With The Advanced Editor 29
4.4 Page Maps . 32
4.5 Creating a Course: Top-level Sequence . 32

CONTENTS 3

5 Numerical Response And Formula Response Questions 33
5.1 The Parts of a Numerical Response Problem 33
5.2 Simple Numerical Response Answer . 35
5.3 Simple Script Usage . 35

5.3.1 Variables in Scripts . 36
5.3.2 Variables in the Text Block . 37
5.3.3 Variables in the Answer Block . 37

5.4 Calling Functions . 37
5.4.1 Numerical Response Randomization 38

5.5 Dynamic, Randomized Problems: Putting It All Together 38
5.6 Units, Format . 38
5.7 For More Information . 39
5.8 Formula Response . 39

5.8.1 Sample Specifications . 39
5.8.2 Formula Notes . 40
5.8.3 Example Formula Response . 40

6 Tags Used in XML Authoring 41
6.1 Response Tags . 41

6.1.1 numericalresponse . 41
6.1.2 imageresponse . 41
6.1.3 optionresponse . 42
6.1.4 radiobuttonresponse . 42
6.1.5 dataresponse . 42
6.1.6 externalresponse . 42
6.1.7 Attributes For All Response Tags . 43

6.2 responseparam and parameter . 43
6.3 Foil Structure Tags . 44
6.4 Hint Tags . 44
6.5 Input Tags . 44
6.6 Output Tags . 45
6.7 Internal Tags . 46
6.8 Scripting Tags . 47
6.9 Structure Tags . 48

7 <script> Tag 48
7.1 Supported script functions . 48
7.2 Script Variables . 50
7.3 Table: LON-CAPA functions . 50
7.4 Table: CAPA vs. LON-CAPA function differences 56

8 Appendix: Symbols in Tex 60
8.1 Greek Symbols . 60
8.2 Other Symbols . 61

1 INTRODUCTION TO LON-CAPA 4

Figure 1: LON-CAPA Log in screen

1 Introduction to LON-CAPA

LON-CAPA is a web-based interface that helps to organize and present your course website,
deliver and manage problems, and manage student enrollment. All author functions are
done through a web browser (Netscape 4.x or higher, a recent Mozilla, or IE 5+ required).

At this time, you should have:

• developed your objectives for your course.

• developed your problems for input into LON-CAPA and determined the appropriate
question formats.

1.1 About This Manual

Throughout this manual, keywords and phrases literally present on the computer screen will
be referred to in bold type. Function names and scripts will be shown in a typewriter

font.
Much of this document can be used as a tutorial that will introduce you to the authoring

system.
For additional help, visit our FAQ at http://help.loncapa.org/.

1.2 Login as Course Author

To begin using LON-CAPA, you first need to log in to your account on LON-CAPA. Open
your web browser and navigate to your local LON-CAPA URL. You will be presented with
a log in screen.

Fill in the Username and Password boxes with your information. Then press the Login
button. This will take you to your LON-CAPA User Roles menu.

1 INTRODUCTION TO LON-CAPA 5

Figure 2: Author Remote Control

Note: Your Username and Password will be given to you by your system administrator.
Both are case sensitive, so make sure you type them with the correct case.

1.3 Author Remote Control

The Author Remote Control will automatically load whenever you log in to LON-CAPA as
the course instructor. The Author Remote Control is a separate window in your browser,
and is automatically sized and placed in the upper left of the screen. The Remote Control
is a tool that allows you to switch between functions and roles within LON-CAPA.

When you move your mouse over the buttons in the remote, the sixteen gray boxes will
show a reminder of what that button does.

• ROLES (CHOOSE ROLE) allows you to select which user role to assume for this
session.

• COM (COMMUNICATION) allows you to access the communication functions in
the system.

• CUSR (USER ROLES) brings up a page that allows you to create new users and
change user privileges.

• CSTR (CONSTRUCT) displays the construction space for your account.

2 CREATING CONTENT USING LON-CAPA 6

• RES (RESOURCE SPACE) allows you to browse the LON-CAPA network direc-
tory.

• SRC (SEARCH LIBRARY) brings up a screen that lets you search the LON-CAPA
resources using multiple criteria.

• PREF (PREFERENCES) brings up a screen that allows you to change some pref-
erences.

• EXIT (LOGOUT) will log you out of the LON-CAPA system.

2 Creating Content Using LON-CAPA

LON-CAPA provides three types of resources for organizing your course website. LON-
CAPA refers to these resources as Content Pages, Problems, and Maps. Maps may be either
of two types: Sequences or Pages. You will use these LON-CAPA resources to build the
outline, or structure, for the presentation of your course to your students.

• A Content Page displays course content. It is essentially a conventional HTML page.
These resources use the extension “.html”.

• A Problem resource represents problems for the students to solve, with answers stored
in the system. These resources are stored in files that must use the extension “.prob-
lem”.

• A Sequence is a type of Map which is used to link other resources together. The users
of this resource can use directional buttons on their remote or the NAV button to follow
the sequence. Sequences are stored in files that must use the extension “.sequence”.
Sequences can contain other sequences and pages.

• A Page is a type of Map which is used to join other resources together into one HTML
page. For example, a page of problems will appears as a problem set. These resources
are stored in files that must use the extension “.page”.

2.1 Description of the Construction Space

The Construction Space is the section of LON-CAPA where you create and manage your
course resources. The figure explains what each button does.

2.2 How to Create New Content Pages

Content Pages are HTML documents that display the course information you are present-
ing.

Many users use tools such as Dreamweaver to create web pages. To upload HTML files
generated with such tools, you can use the Browse button in the Construction Space, locate
your HTML file, and use the Upload File button to create a content page in LON-CAPA.
Remember to upload any graphics your generated web pages may have included.

To create new Content Pages, do the following:

2 CREATING CONTENT USING LON-CAPA 7

Figure 3: Construction Space
Contents of the Construction Space:

Button Name Description

Publish this Resource Opens the Resource Publishing window.
List Directory Lists the contents of the current working directory

Copy Type a new name in the entry box to make a copy the current resource
Browse Helps you select a file to upload

Upload File Uploads the selected file to your Construction Space
Retrieve Old Version Load an older version of a resource if you have multiple versions

Delete Deletes the current resource
Rename Type a new name in the associated entry box to rename a resource

New Subdirectory Type a name in the entry box to create a new directory

1. Click the CSTR button on the LON-CAPA remote. Your web page will change to
your Construction Space.

2. In the Location bar of your browser, type in the full URL of the new Content Page.
Make sure the last part of the URL ends with “.html”, for example,
http://(your library server)/priv/username/new resource.html .
Press the Return or Enter key.

3. Type the content into the editor, OR copy and paste HTML source code obtained
through the use of some other HTML authoring program into the editor.

4. Optionally, click the View button to preview your Content Page.

5. Finally, click the Save this button OR click the Save and then attempt to clean
HTML button.

Repeat this process as many times as necessary to create your Content Pages.
If you’re following this as a tutorial, create at least one content page, which we’ll use later

as raw material. Visit the FAQ at http://help.lon-capa.org/ if you get “unmatched tag”
warnings.

2.3 How to Edit Existing Content Pages

You may edit any Content Pages that have been created.
To edit Content Pages:

1. Click the CSTR button on the LON-CAPA Remote. Your web page will change to
your Construction Space.

2. Click on the link for the name of the Content Page to edit. The Content Page editor
will load and display the current edition of the Content Page.

2 CREATING CONTENT USING LON-CAPA 8

3. Press the Edit button. Edit the HTML code, or copy and paste HTML source code
into the editor.

4. Finally, click the Save this button OR click the Save and then attempt to clean
HTML button. If you do not do this, your work will not be saved.

Once you’ve saved your page, you can click the View button to preview your Content Page.

2.4 Creating Online Problems Using LON-CAPA

If you’re following this as a tutorial, create one of each of these problem types now. We’ll
be using them later as raw material to assemble maps and sequences.

While several problem types are listed here, in LON-CAPA all problems are actually
the same. All problems are written in XML, which can be obtained and edited with the
EditXML button. The problem types listed in this manual are just templates. As your
knowledge advances, you may wish to play with the XML representation directly to see what
you can do.

2.5 Problem Types

In this manual we will cover five basic types of problems: Radio Response, Option Response,
String Response, Numerical Response, and Formula Response. You will need to identify
which types of problem you want to use and create appropriate questions for your course.

The problem editor gives you a testing area where you can try your problems out, with
several different randomizations by varying the Random Seed. If you answer a problem
correctly and can no longer enter new answers, you can get the answer field back by hitting
the Reset Submissions button.

2.6 Foils

In the LON-CAPA system, a Foil is the statement after the drop-down box or radio button
in a Radio Response or Option Response problem. Foils do not need to be text; they can be
images or other resources.

2.6.1 Radio Response Problems

Radio Response problems present a list of foils with buttons. The student can select one
of these statements by clicking the appropriate radio button.

2.6.2 Option Response Problems

Option Response problems present foils to the student with drop-down boxes. The student
can select the matching choice for the foils from a list of choices. Optionally, the foils may be
bundled into Concept Groups and the system will select one foil from each group to display
to the student.

By default, the list of options is presented in front of the foils. Using the optional
<drawoptionlist /> tag, the list of options can be embedded into the foil.

2 CREATING CONTENT USING LON-CAPA 9

Figure 4: Formula Response Problem

2.6.3 String Response Problems

String Response problems allow the student to submit a string of characters for the answer.
Examples of String Response questions are vocabulary tests, short answers and chemical
formulas.

Note that it is easy to abuse String Response problems. For instance, consider the
question “Who wrote ’Huckleberry Finn’?” If you tell the system the answer is “Mark
Twain”, and a student answers “Twain”, the system will mark it wrong. If they answer
“Samuel Clemens”, then the student will definitely get it wrong. There is some room for
flexibility in the string processing, but it can be difficult to get it all correct. Before you use
a String Response problem, be sure you can easily characterize correct answers.

2.6.4 Numerical Response Problems

Numerical Response problems are answered by entering a number and (optionally) a unit,
such as 2.5 m/sˆ2. Tolerance and required significant digits can be specified as well.

2.6.5 Formula Response Problems

Formula Response problems ask the student to type in a formula as an answer. If the
answer is 2x2 + 4, the student is allowed to type “2*x*x+4”, “x*x + x*x + 4”, “2*xˆ2 +
14 - 10”, or any other equivalent expression. Formula Response problems have many of the
same characteristics of Numerical Response problems, including the ability to run scripts,
dynamically generate answers, etc.

2 CREATING CONTENT USING LON-CAPA 10

Figure 5: Creating A New Problem Resource

2.7 Creating Radio Response Problems

To create a Radio Response problem, create a new resource as described in section 2.2.
This is a “problem” resource so the URL must end in “.problem”. You should see a screen
as in figure 5. You will need to specify the question text and foil statements.

1. In the drop-down option box, select Radio Response Problem, and click the New
Problem button.

2. Click the Edit button above the sample problem to enter edit mode. You should see
an editing screen.

3. In the Text Block at the top of the problem, remove the sample text and type the
question for your problem. Ex: “What is two plus two?”

4. Locate the Response: One of N statements element. In the Max Number of
Shown Foils text box, place the number of foils you wish to display to the student.

5. Locate Foil 1. Remove the text that is in the text box and put the correct answer for
the problem in the Text Block. For example, “Four.” Make sure this is set to true
in the Correct Option field.

6. Below it, you will see Foil 2. Remove the text in the text box and put an incorrect
answer for the problem. Ex: “Purple.” Make sure this is set to false in the Correct
Option field.

7. Repeat the previous step until you’ve filled in all of the other incorrect answers you
wish to offer the students.

8. Once you’ve filled in all of the incorrect answers, change the Correct Options on the
other foils to Unused.

2 CREATING CONTENT USING LON-CAPA 11

Figure 6: Radio Response Creation Form

9.

Figure 7: Hint Element

2 CREATING CONTENT USING LON-CAPA 12

Figure 8: Option Response Problem

10. Scroll down to the Hint element. Type some text that will help students when they
answer incorrectly. You may delete the hint by selecting Yes from the Delete drop-
down box.

11. Click the Submit Changes button located at the top of the frame. If you do not do
this, your changes will not be saved.

The Correct Option drop down box controls whether or not a given answer will be accepted
as a correct answer. If it is set to true, that answer will be considered a correct answer. Any
number of foils can be marked true, but only one will be shown to any given student. If it
is set to false, it will be considered an incorrect answer. If it is set to Unused, the system
will not use that foil.

2.7.1 Randomization

LON-CAPA will randomize the choices presented to each student and the order they are
presented in. If you wish to present each student the same choices, make sure the Maximum
Number of Shown Foils box contains the number of incorrect answers, which will force
them to all be displayed.

2.8 Option Response Problems

2.8.1 Option Response Problems with Concept Groups

Each Option Response problem can have three parts:

1. The Concept Groups

2. The options for the students to select, by default “True” and “False”

3. The hint for the student

Each Concept Group has some number of foils representing questions which are conceptu-
ally related. Option Response Problem Templates are available for 4 and 8 Concept Groups.
When the Option Response problem is presented to a student, the LON-CAPA system will
randomly select one foil from each Concept Group and present it to the student. In order
to receive credit for the problem, the student must select the corresponding option from the
drop-down box for each given foil.

2 CREATING CONTENT USING LON-CAPA 13

2.8.2 Example: Concept Group

A Concept Group may contain the following True/False questions:

• “Mark Twain” is the pen name of Samuel Clemens.

• Mark Twain wrote “The Call of the Wild”.

• Mark Twain wrote “Huckleberry Finn”.

• Mark Twain spent most of his life in the Congo.

For each foil, the author marks it true or false. When the student logs on and attempts
to answer this question, the student will see only one of the four choices for that Concept
Group. They then go on to do the remaining three to seven Concept Groups in this question
before submitting their answer.

2.8.3 Example: Matching Problem

Option Response problems can be used as matching problems.
For example, you might want to ask the student to match musical compositions with

their composers. You could create an Option Response problem with 4 Concept Groups,
and place the following four foil groups each in its own concept group:

• Claire de Lune, Ballade (Debussy)

• The Pastoral Symphony, The Ninth Symphony (Beethoven)

• Sleeping Beauty Suite, The Dance of the Sugar Plum Fairies (Tchaikovsky)

• Slavonic Dances, New World Symphony (Dvorak)

You could then add the following options to the option list:

• Debussy

• Beethoven

• Schubert

• Tchaikovsky

• Dvorak

The same answers can be used more than once, or not at all, as you see fit. It is conventional
to place such a warning in the Text Block describing the problem to the students.

2 CREATING CONTENT USING LON-CAPA 14

Figure 9: Option Response Editor

2.8.4 Creating Option Problems

To create an Option Response problem, create a new resource as described in section 2.2.
This is a “problem” resource so the URL must end in “.problem”. You should see a screen
as in figure “Option Response Editor”.

1. In the drop-down option box as seen in figure 5, select Option Response Problem
with N Concept Groups, where N is the number of Concept Groups you wish the
problem to have, and click the New Problem button.

2. Click the Edit button above the sample problem to enter edit mode. You should see
the Option Response page open up.

3. Replace the text in the Text Block with text that explains the conditions for your
problem.

4. Locate the Max Number of Shown Foils element and type a number from 1 to 8
to display that number of questions. You cannot display more than one foil from each
concept group, so this option will only reduce the number of foils displayed, if it is less
than the number of concept groups in your Option Response problem.

5. Now you must define the options the students can select. For each option you wish to
add to the Option Response question, type the option into the Add new Option box
in the Select Options section, then hit the Save Changes button. If you do not hit
the Save Changes button, your option will not be selectable below. (You can delete
unwanted options in the last step.)

2 CREATING CONTENT USING LON-CAPA 15

6. Now, you need to define the question foils. Look for the foil with the name “One”.
Type the question into the text box and select the correct option for that question
from the Correct Option drop-down menu. Click Submit Changes to save this
question foil. Repeat this step for all remaining foils.

7. Locate the foils that are not being used. In their Delete menus, set the value to
Yes. Once you’ve set the Delete menu value correctly for all the foils, click the Save
Changes button.

8. In the Hint area, provide a helpful hint for users who get the problem incorrect, and
click the Save Changes button.

9. Make sure all the options you want to delete are not used for any of your foils. If a
deleted option is used in a foil, it will appear in a text box in the Correct Option area
for that foil. To make the drop-down box reappear, type an option already defined in
the Select Options field, and hit Submit Changes. A drop-down box will reappear.
To delete the irrelevant options from the Option Response question, select that option
from the Delete an Option drop down, and hit the Save Changes button. Do this
for each option you wish to remove.

2.8.5 Simple Option Response: No Concept Groups

If you select Simple Option Response from the drop-down box, you will get a template
that will allow you to enter up to eight foils with no grouping. The system will randomly
mix these foils when presenting them to the student. You can have more foils than the Max
Num of Shown Foils so that each student will not have the identical foils.

2.9 Creating a String Response Problem

To create a String Response problem, create a new resource (described in 2.2). This is a
“problem” resource so the URL must end in “.problem”.

1. In the drop-down option box as seen in 5, select String Response Problem, and
click the New Problem button.

2. Click the Edit button above the sample problem to enter edit mode. You should see
the String Response editor page open up, which should look something like what you
see in the “String Response Editor” figure.

3. Clear the text from the Text Block at the top of the problem, and type in your
problem.

4. In the Answer Box, type the correct answer.

5. Select the answer condition from the drop-down. There are three cases to choose from:

(a) cs: This means “Case Sensitive”. For example, this is useful in chemistry, where
HO and Ho are completely different answers. The student must match the case
of the answer.

2 CREATING CONTENT USING LON-CAPA 16

Figure 10: String Response Editor

2 CREATING CONTENT USING LON-CAPA 17

(b) ci: This means “Case Insensitive”. The system does not use the case of the
letters to determine the correctness of the answer. If the correct answer is “car”,
the system will accept “car”, “CAR”, “Car”, “caR”, etc.

(c) mc: This means “Multiple Choice”. The student’s answers must contain the
same letters as the question author’s, but order is unimportant. This is usually
used to give a multiple choice question in the question’s Text Block, which may
have several correct parts. If the author sets the correct answer as “bcg”, the
system will accept “bcg”, “cbg”, “gcb”, etc., but not “bc” or “abcg”.

It is conventional to inform the students if the problem is case sensitive, or that the
order of the answers doesn’t matter.

6. Optionally, locate the Single Line Text Entry Area block and set a length in the
Size box. This will only affect the size of the box on the screen; if you set the box size
to 2, the student can still enter 3 or more letters in their answer.

7. Scroll down to the Hint element, and type some text that will help students when
they answer incorrectly, or delete the hint by setting the Delete field to Yes.

8. Click the Submit Changes button.

2.10 Creating Numerical Response and Formula Response Prob-
lems

Numerical Response problems are answered by entering a number and an optional unit. For
instance, a numerical response problem might have an answer of 2m/s2. Formula Response
problems are answered by entering a mathematical formula. For instance, a formula response
problem might have an answer of x2 +11. The answer may be in any equivalent format. For
instance, for x2 + 11, the system will also accept x ∗ x+ 11 or x2 + 21− 10.

Creating Numerical Response and Formula Response problems starts the same as the
other problem types, but because of the power of Numerical Response and Formula Response
problems, they are covered in their own section after the end of the tutorial. For more
information about these problem types, please see section 5 for Numerical Response problems
and section 2.6.5 for Formula Response problems.

2.11 Dynamically Generated Plots

The gnuplot tag allows an author to design a plot which is created when it is viewed. This
is intended for use in homework problems where each student needs to see a distinct plot.
It can be used in conjunction with a script tag to generate random plots.

The following parameters may be set:

• brief description of the plot This text is used as the alt parameter of the img

tag used to embed the plot.

• background color of image (xffffff) See the section on color selection 2.13 for
help on specifying colors.

2 CREATING CONTENT USING LON-CAPA 18

• foreground color of image (x000000) See the section on color selection 2.13 for
help on specifying colors.

• height of image (pixels)

• width of image (pixels)

• Size of font to use “small”, “medium”, or “large”. The font used for any text on
the plot is set with this tag.

• Transparent image “Yes” or “No”. If the image is transparent the background color
will be ignored.

• Display grid “Yes” or “No”.

• Number of samples for non-data plots If a function 2.12 tag is used to specify
the curve 2.12, this indicates the number of sample points to use.

• Draw border around plot “Yes” or “No”

• alignment for image in html “Left”, “Center”, or “Right”. This is the value used
for the align parameter in the img tag which embeds the plot in the problem.

• Width of plot when printed (mm) The width in mm of the plot when it is printed.
The default is approximately one half of a U.S. letter size page, 93 mm.

• Font size to use in TeX output (pts) The size in points of text on the graph
when it is printed out.

• Plot type “Cartesian” or “Polar”.

• margin width (pts) The left, right, top, or bottom margin width measured in points.

• Size of major tic marks The size of the larger tic marks on the plot border or axes,
measured in graph units.

• Size of minor tic marks The size of the smaller tic marks on the plot border or
axes, measured in graph units.

The gnuplot tag allows the use of the the following tags:

• curve 2.12

• key 2.11

• label 2.11

• axes 2.11

• tics 2.11

• title, xlabel, and ylabel 2.11

2 CREATING CONTENT USING LON-CAPA 19

Three of the more basic tags are title, xlabel, and ylabel. Their size and color depend
on the values chosen for the font size and graph foreground color specified in the gnuplot
2.11 tag. The figure below shows the locations of the various labels.

The Plot Axes tag allows you to specify the domain and range of the data to display.
It is closely tied with the Plot Ticks 2.11 tags, which specify where the gridlines are drawn
on the plot. The Plot Axes tag sets the following parameters:

The color of grid lines
If the “Display Grid” parameter of the Gnuplot tag is set to yes, the grid will be displayed

in the specified color. Hexadecimal notation is used to specify the color 2.13.
The view of the graph shown
The viewing rectangle of the graph is set with the following parameters:

• minimum x-value

• maximum x-value

• minimum y-value

• maximum y-value

See also Plot Ticks 2.11 and the general Gnuplot help ??.
The xtics and ytics tags can be inserted by selecting the Plot tics item from the insert

selection list of the gnuplot tag.
The xtics and ytics tags have identical structure and the description presented here

applies to both.
The tics tags allow specification of the following parameters:

• Location of major tic marks “Border” or “Axis”. Tic marks can be placed on the
border or on the axes. The images below illustrate the effects of each of these options.

2 CREATING CONTENT USING LON-CAPA 20

• Mirror tics on opposite axis? “Yes” or “No”. If the location of tic marks
is set to “border” this parameter determines if they are shown on both the top and
bottom or right and left sides of the graph. The “mirror” tic marks are unlabelled.

• Start major tics at

The point in graph coordinates which to start making major tics. This may be less
than or greater than the lower limit for the axis.

• Place a major tic every

The span, in graph coordinates, between each major tic mark.

• Stop major tics at

This may be less than or greater than the upper limit for the axis.

• Number of minor tics between major tic marks

The number of subdivisions to make of the span between major tic marks. Using a
value of “10” leads to 9 minor tic marks. The example below uses a value of “5” to
produce 4 tic marks.

2 CREATING CONTENT USING LON-CAPA 21

The key tag causes a key to be drawn on the plot when it is generated. The key will
contain an entry for each curve 2.12 which has a name.

The key is the color of the foreground of the plot, specified in the gnuplot 2.11 tag.
The label tag allows the author to place text at any position on the plot. There may

be many label tags on one plot and all the labels which fall within the plot will show. The
color used will be to foreground color of the plot and the font will be the size specified for
the plot, both of which are set in the gnuplot 2.11 tag.

• justification of the label text on the plot “left”, “right”, or “center”.

• x position of label (graph coordinates)

• y position of label (graph coordinates)

The text to be placed on the plot must be entered as well.

2.12 Specifying Curves to Plot

The curve tag is where you set the data to be plotted by gnuplot.
The following parameters may be set:

• color of curve

The color of the curve on the plot. See Selecting Colors 2.13.

• name of curve to appear in key

If a key is present, the name of the curve will appear with a sample of its line type.

• line style

See the section on line styles 2.12 for more information about the available line styles
and their data requirements.

• point type

This parameter may not apply to all linestyles.

• point size

This parameter may not apply to all linestyles. The size of the points, in pixels, present
on the line. Some point types are not affected by this parameter.

2 CREATING CONTENT USING LON-CAPA 22

There are two ways of entering the information to be plotted, which are accessed using
the subtags of curve, data 2.12 and function 2.12.

The data tag is used to specify the values plotted in the gnuplot 2.11 tag. The data
tag is only used in the Curve 2.12 tag.

The data must be either a perl array, @X, or a comma seperated list, such as “0.5,0.9,1.5,
2.4” (without quotes). ’NaN’ is a valid value.

The function and number data tags required varies based on the line style 2.12 chosen
for the curve. In all cases the first data tag will hold the “X” values and the second will
hold the “Y” values.

All of the data sets in the data tag must have the same number of elements.
The function tag allows you to specify the curve to be plotted as a formula, instead of

numerical data.
The function must be a mathematical expression. Use the independent variable “x” for

cartesian plots and “t” for polar plots. Implicit multiplication is not accepted by Gnuplot.
The following are examples of valid functions and invalid functions:

• sin(x)

• sin(2*x)

• sin(x**2)

• exp(x)

• 3*x**x

• exp(sin(2*x))

• sinh(x)

• sin(t)*cos(t) (polar plot only)

Unless otherwise noted the linestyles require only 2 data sets, X and Y.

• lines Connect adjacent points with straight line segments.

• points Display a small marker at each point.

• linespoints Draw both lines and points.

Draws a small symbol at each point and then connects adjacent points with straight
line segments.

• dots Place a tiny dots on the given points.

• steps Connect points with horizontal lines.

This style connects consecutive points with two line segments: the first from (x1,y1)
to (x2,y1) and the second from (x2,y1) to (x2,y2).

• fsteps Connect data with horizontal lines.

This style connects consecutive points with two line segments: the first from (x1,y1)
to (x1,y2) and the second from (x1,y2) to (x2,y2).

2 CREATING CONTENT USING LON-CAPA 23

• histeps Plot as histogram.

Y-values are assumed to be centered at the x-values; the point at x1 is represented as a
horizontal line from ((x0+x1)/2,y1) to ((x1+x2)/2,y1). The lines representing the end
points are extended so that the step is centered on at x. Adjacent points are connected
by a vertical line at their average x, that is, from ((x1+x2)/2,y1) to ((x1+x2)/2,y2).

• errorbars Same as yerrorbars.

• xerrorbars Draw horizontal error bars around the points.

Requires 3 or 4 data sets. Either X, Y, Xdelta or X, Y, Xlower, Xupper. Xdelta is a
change relative to the given X value. The Xlower and Xupper values are absolute grid
coordinates of the upper and lower values to indicated with error bars.

• yerrorbars Draw vertical error bars around the points.

Requires 3 or 4 data sets. Either X, Y, Ydelta or X, Y, Ylower, Yupper. Ydelta is
a change relative to the given Y value. The Ylower and Yupper values are the grid
coordinates of the upper and lower values to indicate with error bars.

• xyerrorbars Draw both vertical and horizontal error bars around the points.

Requires 4 or 6 data sets. Either X, Y, Xdelta, Ydelta or X, Y, Xlower, Xupper,
Ylower, Yupper. Xdelta and Ydelta are relative to the given coordinates. Xlower,
Xupper, Ylower, and Yupper are the grid coordinates of the upper and lower values to
indicate with the error bars.

• boxes Draw a box from the X-axis to the Y-value given.

Requires either 2 or 3 data sets. Either X, Y or X, Y, Xwidth. In the first case
the boxes will be drawn next to eachother. In the latter case Xwidth indicates the
horizontal width of the box for the given coordinate.

• vector Draws a vector field based on the given data.

Requires 4 data sets, X, Y, Xdelta, and Ydelta. The ‘vector‘ style draws a vector from
(X,Y) to (X+Xdelta,Y+Ydelta). It also draws a small arrowhead at the end of the
vector. May not be fully supported by gnuplot.

2.13 Color Selection

The default colors are a white background (xffffff) with black (x000000) forground, gridlines,
and curve.

• Background color is an attribute of the gnuplot tag 2.11. This controls the color of the
plot image. The default is white (xffffff).

• Forground color is an attribute of the gnuplot tag 2.11. This controls the color of the
border.

• Gridline color is an attribute of the axis tag 2.11.

• Curve color is an attribute of the curve tag 2.12. This is the color of the curve function
or data points. Different curves can be given different colors.

3 PUBLISHING YOUR RESOURCES 24

2.14 General Problem Editing

The following capabilities are available in all problem types:

2.14.1 Adding Picture

To add a picture to a problem, the picture must first be uploaded to your construction space,
then published. Then, in the text area of your problem, add the following:

where DOMAIN is the domain the picture is in, AUTHOR is the person who published
the picture, and the rest is the standard path to the picture.

It is also possible for advanced users to use a script variable in the place of the picture
URL, like this:

and use the string variable $picture in the script of the problem to select from several
possible pictures. If you do this, you will need to Edit XML for the problem and add the
various graphics used in the problem to the ¡allow¿ tags on the bottom.

When print resources with pictures, LON-CAPA will automatically convert graphics in
EPS files. (EPS is a graphics format designed for printing.)

The automatic conversion of a web graphic to an EPS file will sometimes look blocky,
because paper has a much higher resolution then the web. If you would like to provide LON-
CAPA with an EPS file to use while printing for a given graphic file, upload your EPS file
into your authoring space with the same name as the .gif, .jpg, or other web graphic, except
ending with the extension “.eps”. When you publish the file, LON-CAPA will automatically
use it in place of the web image file when printing.

For instance, if you have a graphics file my.image.gif, you can upload an EPS file named
my.image.eps.

3 Publishing Your Resources

In order to make the content you’ve created available for use in courses, you must publish
your content. LON-CAPA provides an easy interface for publishing your content pages,
problem resources, and sequences. You can specify title, author information, keywords, and
other metadata. LON-CAPA uses this metadata for many things, and it’s important to fill
the metadata out as accurately as possible.

3.1 What is Metadata?

Metadata is data about data. Metadata can often be thought of as a label on some bit
of information that can be useful to people or computer programs trying to use the data.
Without metadata, the person or computer trying to use the original information would have
to guess what the original data is about. For example, if you create a problem and neglect
to say in the title or subject of the problem what it is about, then a human who wants to
use that problem would have to read the problem itself to see what it was about, which is
much more difficult than just reading a title. A computer trying to do the same thing would
be out of luck; it is too stupid to understand the problem statement at all.

3 PUBLISHING YOUR RESOURCES 25

Figure 11: Construction Space for Publishing

One example of metadata is the ¡title¿ of a web page, which usually shows up in the title
bar of the browser. That is information about the web page itself and is not actually part of
the web page. People use the title information when they bookmark a page. Search engines
use it as a clue about the content of the web page.

3.2 Publishing A Resource

To publish a resource, log in and choose your Author role. Then click CSTR to go to your
construction space. You should see something like the “Construction Space for Publishing”.
Click on the Publish button for the resource you wish to publish. You will get a metadata
screen that should look something like the “Publishing Metadata Screen” figure. Fill out the
form. If you are creating resources that may be used in several courses, you should talk with
the other authors and establish some sort of standard title and subject scheme in advance.

Language is the language the problem is written in. Publisher/Owner is the LON-
CAPA user who owns the problem.

Keywords and Abstract are more information about the problem.
The Keywords are words that are strongly connected to your problem; for instance a

physics problem about a pulley might include “pulley” as a key word. LON-CAPA pulls
out words used in the text of the resource for you so you can just click on their check boxes
to make them keywords. Additional keywords allows you to add any keyword to your
problem that are not actually in the problem. For instance, on that same problem a physicist
might add the keyword “statics”, even though it doesn’t appear in the original problem,
because Physics uses that as a classification of problem type. Additional Keywords are
also useful when publishing graphics.

You need to set the copyright and distribution permissions in the COPYRIGHT/DISTRIBUTION
drop-down. This setting controls who is allowed to use your resource as follows:

• System Wide is the default. The content can be used for any course within the
network, regardless of the domain. Instructors can find your content and use it in their
courses. Once an instructor selected a resource, the students in the course have access.

3 PUBLISHING YOUR RESOURCES 26

Figure 12: Publishing Metadata Screen

4 CREATING A COURSE: MAPS AND SEQUENCES 27

Figure 13: Map Editor Selection

• Domain - Limited to courses in the domain published means that only courses
running in the same domain as you can use your content.

• Private - visible to author only means that it can’t be used for any course.

• Public - no authentication required means anyone can find and use the resource
- even without being logged in to the system.

• Customized right of use means that access to the resource is controlled by a separate
Custom Rights file. This file needs to be specified during publication. You can edit
a Custom Rights file in your author space, and need to publish it like any other file.
Any number of your resource can point at the same Custom Rights file - if you want
to change access rights for all of them, you just need to change and re-publish this one
file.

Not all of these choices may be visible, depending on the nature of the resource.
Now when you click Finalize Publication, your resource will be published and usable

(unless you set the distribution to “private”).
If you’re following this as a tutorial, publish your resources so we can use them in the

next section.

4 Creating A Course: Maps and Sequences

In order to create a useful course, we need to arrange our raw materials so that students can
use them.

4.1 Creating Sequences

A Sequence is a series of resources that can be navigated using the NAV remote control
button, or by using the arrow keys on the remote control.

To create a Sequence resource, create a new resource as described in section 2.2. This is a
“sequence” resource so the URL must end in “.sequence”. After you enter in the URL ending
in “.sequence”, you should see a screen as in figure 13. You can use either the advanced
editor or the simplified editor.

4 CREATING A COURSE: MAPS AND SEQUENCES 28

Figure 14: Simple Map Editor

4.2 Creating a Simple .sequence With The Simple Editor

After creating a new .sequence resource and getting the editor selection prompt (as in the
“Simple Map Editor” figure), click the Simple Edit button to get to the simple map editor,
which appears in the figure.

The Simple Editor can create .sequences and .pages which are linear, which means they
have no branches or conditions.

On the right side of the simple editor is the Target, which represents the map you are
currently building. On the left side is the Import area, which represents a work area you
can use for your convenience to load and manipulate resources you may wish to include in
your map. Using the three buttons in the middle of the screen, you can cut things out of the
Target (top button), copy from the Target to the Import (middle button), and copy from
the Import to the Target (bottom button).

You can do a Group Search and a Group Import on both sides of the screen. A Group
Search allows you to run a search, then import selected results from that search either directly
into your Map or into your Import space. Checkboxes will appear next to the results in the
Group Search, and you can click the resources you wish to add to your map in the order that
you want them added. After you select the resources, you will be presented with a screen
that allows you to change their order. You will then be able to import the selected resources
and work with them.

A Group Import works in a similar fashion, but allows you to use the LON-CAPA network
browser to select your resources.

On the Import side, you can also browse for another Map, and load the resources used
in that map into your Import workspace. You can also discard the selected resources, clear
all the resources, and view the selected resources by using the buttons on the Import side of
the screen.

4 CREATING A COURSE: MAPS AND SEQUENCES 29

Figure 15: Initial Map Editor

Both list boxes support standard multi-select mechanisms as used in your OS.

4.3 Creating a Simple .sequence With The Advanced Editor

After creating a new .sequence resource and getting the editor selection prompt (13), click
the Advanced Edit button to get to the advanced map editor. You should see the initial
map editor as shown in the “Initial Map Editor” figure. Note there are two windows: One
is the workspace and one is a secondary window which will contain information as you add
resources.

Click the Start box. You’ll see what is shown in the “After clicking Start in the Map
Constructor” figure. Click Link Resource in the secondary window then click on the
Finish box. After that, click Straighten. You should see something looking like the
“Straightened Map” figure. This creates a simple map that flows from beginning to
end.

To insert a resource into the flow, click the black line with two arrows, seen between the
Start and Finish boxes in the “Straightened Map” figure. In the secondary window,
you will see something like the “Inserting a Resource” figure. Click Insert Resource
Into Link. A new resource box will appear in the link. Click the resource, which will
have the label Res.

3. Click Browse and the Network Directory Browser will appear, as shown in the
“Network Directory Browser” figure. Press the SELECT button that is next to the
resource you want to place in the chosen resource box. Once you’ve done that, if you
look back at the window that popped up when you clicked on New Resource, you’ll
see something like the “Resource Chosen” figure. You can type the URL and Title
into the secondary window if you prefer, following the format you see when you’ve
successfully browsed to a resource. After you click Save Changes, your changes will

4 CREATING A COURSE: MAPS AND SEQUENCES 30

1.

Figure 16: After clicking Start in the Map Constructor

Figure 17: Straightened Map

2.

Figure 18: Inserting a Resource

4 CREATING A COURSE: MAPS AND SEQUENCES 31

Figure 19: Network Directory Browser

Figure 20: Resource Chosen

4 CREATING A COURSE: MAPS AND SEQUENCES 32

Figure 21: Creating a New Course

be set and the icons for the resource will appear in the Res box, as shown in figure
20. Click Save Map in the bar above your map to save the map.

Clicking on the left icon for a resource will open a new browser window with an
informational page about that resource. Clicking on the right icon for a resource will
open a new browser window and take you to the rendering of that resource.

4. Repeat steps two and three for as many resources as you’d like to bind together into
one page. You can insert the new resources anywhere you’d like.

5. When you are done adding resources, click the Save Map link to save the map.

In addition to manually adding in resources, the Advanced Editor also has the ability to
import resources in the same way that the Simple Editor can: From a LON-CAPA network
browser window, from a Group Search, or from another Map.

The Advanced Editor has many more capabilities which you can explore.

4.4 Page Maps

Creating a Page map is the same as creating a Sequence map, except that when choosing
the name of the resource, the URL will end with “.page”. This way, all resources you add in
the map editor will appear on one page together. Pages are often used to connect problems
in a homework set.

4.5 Creating a Course: Top-level Sequence

In order to view sequences, they need to be part of a course.
Courses have a Top-level map which defines the whole course. This Top-Level map will

often contain maps corresponding to homework assignments, chapters, or units. To view

5 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 33

your maps, you will need to make them part of a course. Only Domain Coordinators can
make courses and set their Top-level maps, so work with your Domain Coordinator if you
need to view your maps.

5 Numerical Response And Formula Response Ques-

tions

Numerical Response problems are very powerful. In fact, they are so powerful it would
be impossible to fully explain what is possible in a simple document. This chapter will
focus on getting you started with Numerical Response problems and show you some of the
possibilities, with no prerequisite knowledge necessary. The more you learn, the more you
will find you can do.

If you like, you can follow this chapter as its own tutorial. Create a Numerical Response
problem using the instructions in section 2.2, ending your resource name with “.problem”,
and create a new Simple Numerical Response problem.

5.1 The Parts of a Numerical Response Problem

A Numerical Response problem has seven major parts by default:

1. The Script is the heart of advanced Numerical Response problems. It can be used to
decide some of the parameters of the problem, compute the answer to the problem,
and do just about anything else you can imagine. The Script language is Perl. You
do not need to know Perl to use the Script block because we will be stepping through
some advanced examples in this chapter, but knowing Perl can help.

2. Like other problem types, the Text Block is used to display the problem the student
will see. In addition, you can place variables in the Text Block based on computations
done in the Script.

3. The Answer is the answer the system is looking for. This can also use parameters
from the Script block, allowing the answer to be computed dynamically.

4. A tolerance parameter determines how closely the system will require the student’s
answer to be in order to count it correct.

For technical reasons, it is almost never a good idea to set this parameter to zero.
Computers can only approximate computations involving real numbers. For instance,
a computer’s [decimal] answer to the simple problem 1

3
is “0.33333333333333331”. It

should be an infinite series of 3’s, and there certainly shouldn’t be a “1” in the an-
swer, but no computer can represent an infinitely long, infinitely detailed real number.
Therefore, for any problem where the answer is not a small integer, you need to allow
a tolerance factor, or the students will find it nearly impossible to exactly match the
computers idea of the answer. You may find the default too large for some problems.

There are three kinds of tolerance. For some answer A and a tolerance T ,

(a) an Absolute tolerance will take anything in the range A ± T . So if A = 10
and T = 2, then anything between 8 and 12 is acceptable. Any number in the
tolerance field without a % symbol is an absolute tolerance.

5 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 34

Figure 22: Numerical Response editor

5 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 35

(b) a Relative tolerance will take anything in the rangeA±aT , where T is interpreted
as a percentage/100. Any number in the tolerance field followed by a % symbol
is a relative tolerance. For example, a = 10 and t = 10% will accept anything
between 9 and 11.

(c) a tolerance that is a calculated variable (identified by $ sign as the first character).
For example, if an answer is $X,and for a student possible values range from−$X1
to +$X1, you could choose T = $tolerance = $2X1/100; acceptable answers
would then be from $X − $tolerance to $X + $tolerance. (This is especially
useful when answers close to zero are possible for some students)

5. A significant figures specification tells the system how many significant figures there
are in the problem, as either a single number or a range of acceptable values, expressed
as min,max. The system will check to make sure that the student’s answer contains
this many significant digits, useful in many scientific calculations. For example, if
the problem has three significant digits, the significant digit specification is “3”, and
the answer is “1.3”, the system will require the students to type “1.30”, even though
numerically, “1.3” and “1.30” are the same. A significant figure specification of “3,4”
means both “1.30” and “1.300” are acceptable.

6. The Single Line Text Entry area, as in other problem types, allowyou to manipulate
the text entry area the student will see.

7. Finally, the Hint should contain text which will help the students when they answer
incorrectly.

5.2 Simple Numerical Response Answer

Along with showing the Numerical Response editor, figure 22 also shows the parameters for
one of the simplest possible types of numerical response. The Text Block has the problem’s
question, which is the static text “What is 2 + 2?” The Answer is “4”. The Hint has been
set to something appropriate for this problem. Everything else has the default values from
when the problem was created.

If you create a problem like this, hit Submit Changes, then hit View after the changes
have been submitted, you can try the problem out for yourself. Note the last box in the
HTML page has the answer LON-CAPA is looking for conveniently displayed for you, along
with the range the computer will accept and the number of significant digits the computer
requires when viewed by an Author.

As you’re playing with the problem, if you use up all your tries or get the answer correct
but wish to continue playing with the problem, use the Reset Submissions button to clear
your answer attempts.

5.3 Simple Script Usage

Totally static problems only scratch the surface of the Numerical Response capabilities. To
really explore the power of LON-CAPA, we need to start creating dynamic problems. But
before we can get to truly dynamic problems, we need to learn how to work with the Script
window.

5 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 36

A script consists of several statements, separated by semi-colons. A statement is
the smallest kind of instruction to the computer. Most problems will be built from several
statements.

A script can contain comments, which are not interpreted as statements by the com-
puter. Comments start with # and go to the end of that line. Thus, if a line starts with #,
the whole line is ignored. Comments can also begin in the middle of a line. It is a good idea
to comment more complicated scripts, as it can be very difficult to read a large script and
figure out what it does. It is a very good idea to adopt some sort of commenting standard,
especially if you are working in a group or you believe other people may use your problems
in the future.

• One of the simplest statements in LON-CAPA is a variable assignment. A variable
can hold any value in it. The variable name must start with a $. In the Script, you
need to assign to variables before you use them. Put this program into the Script field
of the Numerical Response:

$variable = 3;

This creates a variable named variable and assigns it the value of “3”. That’s one
statement.

Variable names are case sensitive, must start with a letter, and can only consist of letters,
numbers, and underscores. Variable names can be as long as you want.

There are many variable naming conventions, covering both how to name and how to
capitalize variables1. It is a good idea to adopt a standard. If you are working with a group,
you may wish to discuss it in your group and agree on a convention.

If you Submit Changes and View the problem, you will see nothing has changed. This
is because in order for a variable to be useful, it must be used. The variable can be used in
several places.

5.3.1 Variables in Scripts

Variables can be used later in the same script. For instance, we can add another line below
the $variable line as such:

$variable2 = $variable + 2;

Now there is a variable called $variable2 with the the number “5” as its value.
Variables can also be used in strings , which are a sequence of letters. The underlying

language of the script, Perl, has a very large number of ways of using variables in strings,
but the easiest and most common way is to use normal double-quotes and just spell out the
name of the variable you want to use in the string, like this:

$stringVar = ‘‘I have a variable with the value $variable.’’;

1The author favors capsOnNewWords. Some people use underscore to separate words. Many use up-

percase letters to specify constants like PI or GOLDEN MEAN. Some people always StartWithCapatalization.

What’s really important is to be consistent, so you don’t have to guess whether the variable you’re thinking

of is coefFriction, CoefFriction, COEF FRICTION, or something else.

5 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 37

Figure 23: Result of Variables in the Text Block

This will put the string “I have a variable with the value 3.” into the variable named
“stringVar”.

If you are following this chapter as a tutorial, add the previous two lines to your Script
and submit the changes for the problem. There’s no need to view it; there’s still no visible
change.

5.3.2 Variables in the Text Block

Once you’ve defined variables in the Script, you can use them in the Text Block. For
example, using the previous three-line script we’ve created so far, you can place the following
in the Text Block:

See the 3: $variable

See the string: $stringVar

If you save that and hit View, you should get what you see in figure 23. Note how the
“$variable” was turned into a 3, and the “$stringVar” was turned into “I have a variable
with the value 3.”

5.3.3 Variables in the Answer Block

You can use variables in the Answer part of the question. This means you can compute an
answer to a question. If you set the answer of the question to be $variable, Save Changes
and View it, you’ll see that LON-CAPA is now expecting “3.0” as the answer, plus or minus
5%.

5.4 Calling Functions

With variables, you can store strings or numbers. Functions allow you to manipulate these
strings or numbers. Functions work like mathematical functions: They take some number
of arguments in, and return one argument, usually a number or a string for our purposes.
There are a lot of functions available in LON-CAPA. You can see a complete list at ??.

For now, let’s just look at some simple examples.
In the Script block, function names start with &. Some example function calls are

shown in figure 24. You can see that functions can take either variables, numbers, or the
results of other function calls as parameters. The &sin function returns the sine of an angle
expressed in radians. &pow raises the first parameter to the power of the second parameter.
&abs returns the absolute value of the argument.

5 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 38

$a = -3.0;

$b = &sin($a);

$c = &pow(3.0, &abs($a));

Figure 24: Some Function Calls

Figure 25: Slope Problem Parameters

5.4.1 Numerical Response Randomization

If you’re doing this as a tutorial, try a few random seeds to see what happens.

5.5 Dynamic, Randomized Problems: Putting It All Together

Now you have all the tools to create those wonderful dynamic, randomized problems that
you’ve seen in LON-CAPA.

Try filling out your problem with the parameters shown in the “Slope Problem Parame-
ters” figure.

When creating randomized problems, you want to make sure that the problems always
have an answer. Consider what might happen if two slopes are chosen, both with the ex-
pression &random(-1.0,1.0,.2). One out of ten students would get a problem where both
slopes were equal, which has either no solution (for unequal y-intercepts) or an infinite num-
ber of solutions (for equal slopes and y-intercepts). Both of these cause a division-by-zero
error on the division that computes the answer. There are many ways to avoid this, one of
the easiest of which is picking one slope negative and one positive. This same problem can
show up in many other places as well, so be careful.

5.6 Units, Format

Numerical Response problems can require units. In the problem editing form, place the
desired unit in the Unit field. For information about what units the system accepts, see ??.

5 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 39

The computer will accept the answer in any of its accepted unit formats. For example, if
the answer to a problem is “1ft”, the computer will accept “12in” as correct.

You can format the number displayed by the computer as the answer. For instance, if
the answer is one-third, the computer will display that it computed “.333333333” as the
answer. If you’d like to shorten that, you can use the Format field. Format strings like
“2E” (without the quotes) will display three significant digits in scientific notation. Format
strings like “2f” will display two digits after the decimal point. Format strings like “2s” will
round a number to 2 significant digits.

5.7 For More Information

The full power of Perl is well outside the scope of this document. Looking in the function
list at 7.3 can give you some ideas. O’Reilly has some good Perl books. The Perl 5 Pocket
Reference will contain more than what you need to know to use LON-CAPA, available at
http://www.oreilly.com/catalog/perlpr3/ .

If you have any problems, consult http://help.loncapa.org/fom/cache/5.html . If you
don’t find the answer to your problem, please help us expand the FAQ by submitting a new
pending question.

Our advanced users often come to prefer the XML interface for the problems, available
through the EditXML buttons. Covering the XML format is beyond the scope of this
manual, but you can learn a lot by using the editor to make changes and seeing what
happens to the XML.

5.8 Formula Response

Formula Response problems have the same capabilities as Numerical Response problems,
and add the ability to ask the student for a symbolic formula as an answer, instead of a
simple number.

5.8.1 Sample Specifications

As you may know, it is extremely difficult to determine whether a given expression is exactly
equal to another expression in general. For example, is sin 2x = 2 sin x cos x? Symbolically
proving it one way or another is impossible in general. Therefore, LON-CAPA uses a sam-
pling system. If your answer and the student’s answer agree at the sampling points within
your given tolerance factor, the student’s answer will be accepted. If the student’s answer
does not agree at the sampling points within your given tolerance factor, it will be rejected.

To specify where to sample the formulas for determining whether the student’s answer is
correct, you need to put a sampling specification in the Sample Points field. The sampling
specifications take the following format:

1. A comma-separated list of the variables you wish to interpret,

2. followed by “@” (not in quotes),

3. followed by any number of the following two things, separated by semi-colons:

(a) a comma-separated list of as many numbers as there are variables, which specifies
one sampling point, OR

5 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 40

(b) a comma-separated list of as many numbers as there are variables, followed by a
colon, followed by another list of as many numbers as there are variables, followed
by a #, followed by an integer.

The first form specifies one point to sample. The second form specifies a range for each
variable, and the system will take as many random samples from that range as the number
after the #.

For 2x2 + 4, with one variable “x”, one could specify:

• “x@2”, which will sample the answers only at 2. (This is generally a bad idea, as the
student could get lucky and match at that point)

• “x@1:5#4” will takes 4 samples from somewhere between 1 and 5.

• “x@1:5#4;10” will takes 4 samples from somewhere between 1 and 5, and also sample
at 10.

For 2x2 + 3y3, which has two variables, one could specify:

• “x,y@4,5:10,12#4;0,0”, which take four samples from the box determined by the points
(4, 5) and (10, 12), and also sample the point (0, 0).

5.8.2 Formula Notes

• The formula evaluator can not handle things of the form “x + - y”. If you have a
random variable that may be positive or negative (as in the example following this
section), you can try wrapping the references to that variable in parentheses. As
always, it is a good idea to try out several randomized versions of your problems to
make sure everything works correctly.

• Never use relative tolerance in Formula Response problems. Relative toler-
ance is poorly defined in Formula Response problems. Always use absolute tolerance.

5.8.3 Example Formula Response

A very simple formula response problem:

• In the Script, place the following:

$slope = &random(-5.0,5.0,.5);

$yint = &random(-5.0,5.0,.5);

$answer = ‘‘$slope*x + ($yint)’’;

• In the Text Block, place the following: “For a line with slope $slope and y-intercept
$yint, what is y equal to?”

• In the Answer, place the following: $answer

• Set the Tolerance to .000001.

• Set the Sample Points to x@0;1;2;3 .

6 TAGS USED IN XML AUTHORING 41

6 Tags Used in XML Authoring

It is assumed that the reader is already familiar with the basic terminology of XML. If not,
it is recommended that you read http://www.w3schools.com/xml/xml syntax.asp to acquire
a basic understanding of how to read and write XML.

LON-CAPA uses a very simple subset of XML and there is a lot you do not need to know,
including but not limited to: CDATA, DTDs, namespaces, and stylesheets. If you search for
XML resources on the Internet yourself, you do not need to read about those things to learn
how LON-CAPA uses XML for problems.

6.1 Response Tags

Response tags are the tags used by LON-CAPA to indicate what a student should enter into
the system, such as a string answer, clicking on a picture, typing in a formula, etc. They are
the core tags of homework problems; a homework problem without at least one response tag
is not really a homework problem.

Simple examples of the more complicated tags are available as templates for you to choose
from when creating a new problem in your Construction Space.

6.1.1 numericalresponse

stringresponse implements a string answer. An internal textline tag (see 6.5) is necessary
for the student’s response to go in. It can check the string for either case or order. Possible
attributes are:

• answer: required. Specifies the correct answer, either a perl list or scalar.

• type: optional. Specifies how the string is checked (like the CAPA styles). Possible
values are:

– cs: case sensitive, order important.

– ci: case insensitive, order important.

– mc: case insensitive, order unimportant. The mnemonic for this option is “multiple
choice”, which is how it was used in CAPA: To allow the user to specify choices
from a multiple choices problem, as in “adce”, meaning parts a, d, c, and e are
true. Order didn’t matter in such a problem. In LON-CAPA, using option-
response with True and False foils would be preferable, but this will remain
supported for easier CAPA to LON-CAPA conversion.

6.1.2 imageresponse

imageresponse implements a image-click answer. imageresponse tags should contain a
foilgroup tag, which contain foil tags. Each foil tag can contain:

• image: required. The delimited text should correspond to a published image resource.
Example: . Should only
appear once per foil.

6 TAGS USED IN XML AUTHORING 42

• rectangle: required. The delimited text specifies a rectangular area that is correct,
specified as (x1,y1)-(x2,y2), where x1, x2, y1, and y2 are number corresponding to
the x and y coordinates of two corners that define a rectangle which specifies where
the right answer for this foil is located on the image. For example, (0,0)-(100,200)
will specify that a rectangle 100 pixels wide and 200 pixels tall, situated in the upper
left of the image, is correct. At least one rectangle is required; multiple rectangles may
be specified.

• text: required. The delimited text is printed before the image is shown on the screen.
This text is typically used to describe to the student what they are expected to click
on.

6.1.3 optionresponse

optionresponse implements a “select from these choices” style question. The choices are
specified by the instructor and use the foil structure tags as described in ??, with this
additional addition:

• foilgroup: required to have an options attribute which should be a perl list of possible
options for the student.

6.1.4 radiobuttonresponse

radiobuttonresponse implements a true/false question with one correct answer. It uses
the foil structure tags as described in ??, but the value of a foil can only be true, false, or
unused.

6.1.5 dataresponse

dataresponse is an advanced type of response tag that implements a simple data storage
and needs an input tag, such as textline, to work correctly. Possible attributes are:

• name: internal name for the value. It will have the part id and response id added to
it.

• type: type of data stored in this response field. It should be one of the types supported
by parameter.html

• display: string that will be used to describe the field when interfacing with humans.

6.1.6 externalresponse

externalresponse is an advanced type of response tag that implements the ability to have
an external program grade a response. It expects either a textline or textfield inside the
tag. Possible attributes are:

• url: url to submit the answer form to. It does not need to be a LON-CAPA machine.

• answer: string or scalar variable that can encode something that should encode the
correct answer. In some cases, this may be nothing.

6 TAGS USED IN XML AUTHORING 43

• form: hash variable name that will be submitted to the remote site as a HTTP form.

The response of the remote server needs to be in XML as follows:

• loncapagrade: takes no attributes, but must surround the response.

• awardetail: required. The delimited text inside must be one of the detailed results
that appears in the data storage documentation. CVS:loncapa/doc/homework/datastorage,
look for resource.partid.responseid.awarddetail.

• message: optional message to have shown to the student.

Example:

<loncapagrade>

<awardetail>INCORRECT</awardetail>

<message>

A message to be shown to the students

</message>

</loncapagrade>

6.1.7 Attributes For All Response Tags

These response tag attributes are used by all response tags:

• id: If this isn’t set, it will be set during the publication step. It is used to assign
parameter names in a way that can be tracked if an instructor modifies by hand.

• name: optional. If set, it will be used by the resource assembly tool when one is
modifying parameters.

6.2 responseparam and parameter

If responseparam appears, it should be inside of a response tag. It defines an externally
adjustable parameter for the question, which the question can then use to allow other users
to customize the problem for their courses without changing the source code of the problem.
Possible attributes are:

• default: required. Specifies a default value for the parameter.

• name: required. Specifies an internal name for the parameter.

• type: required. Specifies the type of parameter: tolerance, int, float, string, or
date.

• description: string describing the parameter. This is what is used to talk about a
parameter outside of a problem.

parameter is exactly the same as responseparam, but should appear outside of a response
tag.

6 TAGS USED IN XML AUTHORING 44

6.3 Foil Structure Tags

All tags that implement a foil structure have an optional arg of max that controls the
maximum number of total foils to show.

• foilgroup: required. Must surround all foil definitions.

• foil: required. The foil is defined by what is delimited by the foil tag.

• conceptgroup: optional. Surrounds a collection of foil. When a problem is displayed,
only one of the contained foil is selected for display. It has one required attribute
concept.

6.4 Hint Tags

All of these tags must appear inside a response tag:

• hintgroup: tag that surrounds all of a hint.

• hintpart: required. Tag to implement conditional hints. It has a required argument
on. When a hint tag named the same as the on attribute evaluates to be correct, the
hintpart will show. If no other hintpart is to show then all hintparts with an on
value set to “default” will show.

• numericalhint: It has all the arguments that numericalresponse does, and the
required attribute name which should be set to the value of which hintpart will be
shown.

• stringhint: It has all the arguments that stringresponse does, and the required
attribute name which should be set to the value of which hintpart will be shown.

• formulahint: It has all the arguments that formularesponse does, and the required
attribute name which should be set to the value of which hintpart will be shown.

• optionhint: The required attribute name should be set to the value of which hint-
part will be shown.

• radiobuttonhint: The required attribute name should be set to the value of which
hintpart will be shown, and the attribute answer should be a two element list, first
the type (foil or concept) and then either the foil’s name or the concept’s string.

6.5 Input Tags

This group of tags implements a mechanism for getting data for students. They will usually
be used by a response tag.

• textfield: Creates a large text input box. If data appears between the start and end
tags, the data will appear in the textfield if the student has not yet made a submission.
Additionally, it takes two attributes: rows and cols, which control the height and
width of the text area respectively. It defaults to 10 rows and 80 columns.

• textline: Creates a single line input element. It accepts one attribute size which
controls the width of the textline, defaulting to 20.

6 TAGS USED IN XML AUTHORING 45

6.6 Output Tags

This group of tags generates useful output.

• algebra: Typesets algebraic expressions

<algebra>2x^y+sqrt(3/x^2)</algebra>

• chem: Typesets chemical equation

<chem>02 + 2H2 -> 2H20</chem>

• num: Typesets a number

<num format=’’2E’’>31454678</num>

• parse: to display the parsed view of a variable’s contents

<script type=’’loncapa/perl’’>

$table=’<table>’;

for ($i=1;$i<=10;$i++) {

$table.=’<tr><td>’.$i.’</td><td>’.&random(1,10,1).’</td></tr>’;

}

$table.=’</table>’;

</script>

<parse>\$table</parse>

• standalone: Everything inbetween the start and end tag is shown only on the web
and only if the resource is not part of a course.

• displayduedate: This will insert the current due date if one is set in the document.
It is generated to be inside a table of 1x1 elements.

• displaytitle: This will insert the title of the problem from the metadata of the prob-
lem. Only the first displaytitle in a problem will show the title; this allows clean
usage of displaytitle in stylesheets.

• window: The text inbetween is put in a pop-up javascript window.

• m: The inside text is LATEX, and is converted to HTML (or MathML) on the fly. If the
attribute eval is set to “on” the intervening text will have a perl variable expansion
done to it before being converted. The default is to convert to the display mechanism
that the user has selected. This can be overriden by setting the attribute display to
one of “tth” or “jsMath” or “mimetex”which will force a specfic display mechanism.

• randomlabel: This shows a specified image with images or text labels randomly
assigned to a set of specific locations. Those locations may also have values assigned
to them. A hash is generated that contains the mapping of labels to locations, labels
to values, and locations to values. Example:

6 TAGS USED IN XML AUTHORING 46

<randomlabel bgimg="URL" width="12" height="45" texwidth="50">

<labelgroup name="GroupOne" type="image">

<location x="123" y="456" value="10" />

<location x="321" y="654" value="20" />

<location x="213" y="546" value="13" />

<label description="TEXT-1">IMG-URL</label>

<label description="TEXT-2">IMG-URL</label>

<label description="TEXT-3">IMG-URL</label>

</labelgroup>

<labelgroup name="GroupTwo" type="text">

<location x="12" y="45" />

<location x="32" y="65" />

<location x="21" y="54" />

<label>TEXT-1</label>

<label>TEXT-2</label>

<label>TEXT-3</label>

</labelgroup>

</randomlabel>

– bgimg: Either a fully qualified URL for an external image or a LON-CAPA
resource. It supports relative references (../images/apicture.gif). The image must
either be a GIF or JPEG.

– width: The width of the image in pixels.

– height: The height of the image in pixels.

– texwidth: The width of the image in millimeters.

6.7 Internal Tags

• labelgroup: One is required, but multiple are allowed. This declares a group of
locations and labels associated with them. Possible attributes are:

– name: This is the name of the group. A hash with this name will be gener-
ated holding the mappings for later use in the problem. For each location a
value will be set for which label is there (EX. $hash{’1’}=”TEXT-2”). For lo-
cations with values, the hash will contain 2 items, a location to value mapping
($hash{’value 1’}=10), and a label to value mapping ($hash{’labelvalue 2’}=10).
For all image style of labels there will also be a label description to label URL
mapping ($hash{’image 2’}=IMG-URL). The entry numlocations will also be
set to the total number of locations that exist (Note: locations and labels start
counting from one.)

– type: the type of labels in this group, either ’image’ or ’text’

– location: declares a location on the image that a label should appear at. Possible
attributes are:

∗ x: The x value of the location in pixels.

6 TAGS USED IN XML AUTHORING 47

∗ y: The y value of the location in pixels.

∗ value: An optional scalar value to associate at this location.

∗ label: Declaration of a label. If this is a text type label, the internal text
should be the text of the label (HTML is not currently supported); if this
is an image type of label, the internal text must be a LON-CAPA resource
specification, and the description filed must be set. Possible attributes are:

· description: Required field for image labels. It will be used when setting
values in the hash.

6.8 Scripting Tags

• display: The intervening Perl script is evaluated in the safe space and the return value
of the script replaces the entire tag.

• import: This causes the parse to read in the file named in the body of the tag and
parse it as if the entire text of the file had existed at the location of the tag.

• parserlib: The enclosed filename contains definitions for new tags.

• script: If the attribute type is set to “loncapa/perl” the enclosed data is a Perl script
which is evaluated inside the Perl safe space. The return value of the script is ignored.

• scriptlib: The enclosed filename contains Perl code to run in the safe space.

• block: This has a required argument condition that is evaluated. If the condition is
true, everything inside the tag is evaluated; otherwise, everything inside the block tag
is skipped.

• notsolved: Everything inside the tag is skipped if the problem is “solved”.

• postanswerdate: Everything inside the tag is skipped if the problem is before the
answer date.

• preduedate: Everything inside the tag is skipped if the problem is after the due date.

• randomlist: The enclosed tags are parsed in a stable random order. The optional
attribute show restricts the number of tags inside that are actually parsed to no more
than show.

• solved: Everything inside the tag is skipped if the problem is “not solved”.

• while: This implements a while loop. The required attribute condition is a Perl
scriptlet that when evaluated results in a true or false value. If true, the entirety of
the text between the whiles is parsed. The condition is tested again, etc. If false, it
goes to the next tag.

7 <SCRIPT> TAG 48

6.9 Structure Tags

These tags give the problem a structure and take care of the recording of data and giving
the student messages.

• problem: This must be the first tag in the file. This tag sets up the header of the
webpage and generates the submit buttons. It also handles due dates properly.

• part: This must be below problem if it is going to be used. It does many of the same
tasks as problem, but allows multiple separate problems to exist in a single file.

• startouttext and endouttext: These tags are somewhat special. They must have
no internal text and occur in pairs. Their use is to mark up the problem so the web
editor knows what sections should be edited in a plain text block on the web.

• comment: This tag allows one to comment out sections of code in a balanced manner,
or to provide a comment description of how a problem works. It only shows up for the
edit target, stripped out for all other targets.

7 <script> Tag

7.1 Supported script functions

This is a list of functions that have been written that are available in the Safe space scripting
environment inside a problem:

• sin(x), cos(x), tan(x)

• asin(x), acos(x), atan(x), atan2(y,x)

• log(x), log10(x)

• exp(), pow(x,y), sqrt(x)

• abs(x), sgn(x)

• erf(x), erfc(x)

• ceil(x), floor(x)

• min(...), max(...)

• factorial(n)

• N%M (modulo function)

• sinh(x), cosh(x), tanh(x)

• asinh(x), acosh(x), atanh(x)

• roundto(x,n)

• web(“a”,”b”,”c”) or web(a,b,c)

7 <SCRIPT> TAG 49

• html(“a”) or html(a)

• j0(x), j1(x), jn(n,x), jv(y,x)

• y0(x), y1(x), yn(n,x), yv(y,x)

• random

• choose

• tex(“a”,”b”) or tex(a,b)

• var in tex(a)

• to string(x), to string(x,y)

• class(), section()

• name(), student number()

• check status(partid)

• open date(), due date(), answer date()

• sub string()

• array moments(array)

• format(x,y),prettyprint(x,y,target),dollarformat(x,target)

• map(...)

• caparesponse check

• caparesponse check list

We also support these functions from Math::Cephes

bdtr: Binomial distribution

bdtrc: Complemented binomial distribution

bdtri: Inverse binomial distribution

btdtr: Beta distribution

chdtr: Chi-square distribution

chdtrc: Complemented Chi-square distribution

chdtri: Inverse of complemented Chi-square distribution

fdtr: F distribution

fdtrc: Complemented F distribution

fdtri: Inverse of complemented F distribution

gdtr: Gamma distribution function

gdtrc: Complemented gamma distribution function

nbdtr: Negative binomial distribution

nbdtrc: Complemented negative binomial distribution

7 <SCRIPT> TAG 50

nbdtri: Functional inverse of negative binomial distribution

ndtr: Normal distribution function

ndtri: Inverse of Normal distribution function

pdtr: Poisson distribution

pdtrc: Complemented poisson distribution

pdtri: Inverse Poisson distribution

stdtr: Student’s t distribution

stdtri: Functional inverse of Student’s t distribution

7.2 Script Variables

• $external::target - set to the current target the xml parser is parsing for

• $external::part - set to the id of the current problem <part>; zero if there are no
<part>

• $external::gradestatus - set to the value of the current resource.partid.solved value

• $external::datestatus - set to the current status of the clock either CLOSED, CAN ANSWER,
CANNOT ANSWER, SHOW ANSWER, or UNCHECKEDOUT

• $external::randomseed - set to the number that was used to seed the random number
generator

• $pi - set to PI

• $rad2deg - converts radians to degrees

• $deg2rad - converts degrees to radians

7.3 Table: LON-CAPA functions

LON-CAPA Function Description
&sin($x), &cos($x), &tan($x) Trigonometric functions where x is in radians.

$x can be a pure number, i.e., you can call
&sin(3.1415)

&asin($x), &acos($x), &atan($x),
&atan2($y,$x)

Inverse trigonometric functions. Return value
is in radians. For asin and acos the value of x
must be between -1 and 1. The atan2 returns
a value between -pi and pi the sign of which is
determined by y. $x and $y can be pure num-
bers

&log($x), &log10($x) Natural and base-10 logarithm. $x can be a
pure number

&exp($x), &pow($x,$y), &sqrt($x) Exponential, power and square root, i.e.,ex, xy
and /x. $x and $y can be pure numbers

7 <SCRIPT> TAG 51

LON-CAPA Function Description
&abs($x), &sgn($x) Abs takes the absolute value of x while sgn(x)

returns 1, 0 or -1 depending on the value of x.
For x>0, sgn(x) = 1, for x=0, sgn(x) = 0 and
for x<0, sgn(x) = -1. $x can be a pure number

&erf($x), &erfc($x) Error function. erf = 2/sqrt(pi) integral (0,x)
et-sq and erfx(x) = 1.0 - erf(x). $x can be a
pure number

&ceil($x), &floor($x) Ceil function returns an integer rounded up
whereas floor function returns and integer
rounded down. If x is an integer than it re-
turns the value of the integer. $x can be a pure
number

&min(...), &max(...) Returns the minimum/ maximum value of a
list of arguments if the arguments are numbers.
If the arguments are strings then it returns a
string sorted according to the ASCII codes

&factorial($n) Argument (n) must be an integer else it will
round down. The largest value for n is 170. $n
can be a pure number

$N%$M N and M are integers and returns the remainder
(in integer) of N/M. $N and $M can be pure
numbers

&sinh($x), &cosh($x), &tanh($x) Hyperbolic functions. $x can be a pure number
&asinh($x), &acosh($x), &atanh($x) Inverse hyperbolic functions. $x can be a pure

number
&format($x,’nn’) Display or format $x as nn where nn is nF or

nE or nS and n is an integer.
&prettyprint($x,’nn’,’optional target’) Note that that tag <num> can be used to do

the same thing. Display or format $x as nn
where nn is nF or nE or nS and n is an integer.
Also supports the first character being a $, it
then will format the result with a a call to &dol-
larformat() described below. If the first charac-
ter is a , it will format it with commas grouping
the thousands. In S mode it will fromat the
number to the specified number of significant
figures and display it in F mode. In E mode it
will attempt to generate a pretty x10ˆ3 rather
than a E3 following the number, the ’optional
target’ argument is optional but can be used to
force &prettyprint to generate either ’tex’ out-
put, or ’web’ output, most people do not need
to specify this argument and can leave it blank.

7 <SCRIPT> TAG 52

LON-CAPA Function Description
&dollarformat($x,’optional target’) Reformats $x to have a $ (or \$ if in tex mode)

and to have , grouping thousands. The ’optional
target’ argument is optional but can be used to
force &prettyprint to generate either ’tex’ out-
put, or ’web’ output, most people do not need
to specify this argument and can leave it blank.

&roundto($x,$n) Rounds a real number to n decimal points. $x
and $n can be pure numbers

&web(“a”,”b”,”c”) or &web($a,$b,$c) Returns either a, b or c depending on the output
medium. a is for plain ASCII, b for tex output
and c for html output

&html(“a”) or &html($a) Output only if the output mode chosen is in
html format

&j0($x), &j1($x), &jn($m,$x), &jv($y,$x) Bessel functions of the first kind with orders 0,
1 and m respectively. For jn(m,x), m must be
an integer whereas for jv(y,x), y is real. $x can
be a pure number. $m must be an integer and
can be a pure integer number. $y can be a pure
real number

&y0($x), &y1($x), &yn($m,$x), &yv($y,$x) Bessel functions of the second kind with orders
0, 1 and m respectively. For yn(m,x), m must
be an integer whereas for yv(y,x), y is real. $x
can be a pure number. $m must be an integer
and can be a pure integer number. $y can be a
pure real number

&random($l,$u,$d) Returns a uniformly distributed random num-
ber between the lower bound, l and upper
bound, u in steps of d. $l, $u and $d can be
pure numbers

&choose($i,...) Choose the ith item from the argument list. i
must be an integer greater than 0 and the value
of i should not exceed the number of items. $i
can be a pure integer

7 <SCRIPT> TAG 53

LON-CAPA Function Description
Option 1 -
&map($seed,[\$w,\$x,\$y,\$z],[$a,$b,$c,$d])
or
Option 2 -
&map($seed,\@mappedArray,[$a,$b,$c,$d])
Option 3 - @mappedArray =
&map($seed,[$a,$b,$c,$d])
Option 4 - ($w,$x,$y,$z) =
&map($seed,\@a)
Option 5 - @Z = &map($seed,\@a)
where $a=’A’
$b=’B’
$c=’B’
$d=’B’
$w, $x, $y, and $z are variables

Assigns to the variables $w, $x, $y and $z the
values of the $a, $b, $c and $c (A, B, C and
D). The precise value for $w .. depends on the
seed. (Option 1 of calling map). In option 2,
the values of $a, $b .. are mapped into the ar-
ray, @mappedArray. The two options illustrate
the different grouping. Options 3 and 4 give a
consistent way (with other functions) of map-
ping the items. For each option, the group can
be passed as an array, for example, [$a,$b,$c,$d]
=> \@a. And Option 5 is the same as option 4
the array of results are saved into a signle array
rather than an array opf scalar variables.

Option 1 -
&rmap($seed,[\$w,\$x,\$y,\$z],[$a,$b,$c,$d])
or
Option 2 -
&rmap($seed,\@rmappedArray,[$a,$b,$c,$d])
Option 3 - @rmapped array =
&rmap($seed,[$a,$b,$c,$d])
Option 4 - ($w,$x,$y,$z) =
&rmap($seed,\@a)
Option 5 - @Z = &map($seed,\@a)
where $a=’A’
$b=’B’
$c=’B’
$d=’B’
$w, $x, $y, and $z are variables

The rmap functions does the reverse action of
map if the same seed is used in calling map and
rmap.

$a=&xmlparse($string) You probably should use the tag <parse> in-
stead of this function. Runs the internal parser
over the argument parsing for display. Warn-
ing This will result in different strings in differ-
ent targets. Don’t use the results of this func-
tion as an answer.

&tex($a,$b), &tex(“a”,”b”) Returns a if the output mode is in tex otherwise
returns b

&var in tex($a) Equivalent to tex(“a”,”“)

7 <SCRIPT> TAG 54

LON-CAPA Function Description
&to string($x), &to string($x,$y) If x is an integer, returns a string. If

x is real than the output is a string with
format given by y. For example, if x =
12.3456, &to string(x,”.3F”) = 12.345 and
&to string(x,”.3E”) = 1.234E+01.

&class(), §ion() Returns null string, class descriptive name, sec-
tion number, set number and null string.

&name(), &student number() Return the full name in the following format:
lastname, firstname initial. Student number re-
turns the student 9-alphanumeric string. If un-
defined, the functions return null.

&check status($partid) Returns a number identifing the current sta-
tus of a part. Ture values mean that a part
is “done” (either unanswerable becuase of tries
exhuastion, or correct) or a false value if a part
can still be attempted. If $part is unspecfied, it
will check either the current <part>’s status or
if outside of a <part>, check the status of pre-
vious <part>. The full set of return codes are:
’undef’ means it is unattempted, 0 means it is
attmpted and wrong but still has tries, 1 means
it is marked correct, 2 means they have exceed
maximum number of tries, 3 means it after the
answer date

&open date(), &due date(), &answer date() Problem open date, due date and answer date.
The time is also included in 24-hr format.

Not implemented Get and set the random seed.
&sub string($a,$b,$c) perl substr function.
However, note the differences

Retrieve a portion of string a starting from b
and length c. For example, $a = “Welcome
to LON-CAPA”; $result=&sub string($a,4,4);
then $result is “come”

@arrayname Array is intrinsic in perl. To access
a specific element use $arrayname[$n] where $n
is the $n+1 element since the array count starts
from 0

“xx” can be a variable or a calculation.

@B=&array moments(@A) Evaluates the moments of an array A and place
the result in array B[i] where i = 0 to 4. The
contents of B are as follows: B[0] = number of
elements, B[1] = mean, B[2] = variance, B[3] =
skewness and B[4] = kurtosis.

&min(@Name), &max(@Name) In LON-CAPA to find the maximum value
of an array, use &max(@arrayname) and to
find the minimum value of an array, use
&min(@arrayname)

undef @name To destroy the contents of an array, use

7 <SCRIPT> TAG 55

LON-CAPA Function Description
@return array=&random normal
($item cnt,$seed,$av,$std dev)

Generate $item cnt deviates of normal distri-
bution of average $av and standard deviation
$std dev. The distribution is generated from
seed $seed

@return array=&random beta
($item cnt,$seed,$aa,$bb) NOTE: Both $aa
and $bb MUST be greater than 1.0E-37.

Generate $item cnt deviates of beta distribu-
tion. The density of beta is: Xˆ($aa-1) *(1-
X)ˆ($bb-1) /B($aa,$bb) for 0<X<1.

@return array=&random gamma
($item cnt,$seed,$a,$r) NOTE: Both $a
and $r MUST be positive.

Generate $item cnt deviates of gamma dis-
tribution. The density of gamma is:
($a**$r)/gamma($r) * X**($r-1) * exp(-$a*X).

@return array=&random exponential
($item cnt,$seed,$av) NOTE: $av MUST
be non-negative.

Generate $item cnt deviates of exponential dis-
tribution.

@return array=&random poisson
($item cnt,$seed,$mu) NOTE: $mu MUST
be non-negative.

Generate $item cnt deviates of poisson distri-
bution.

@return array=&random chi
($item cnt,$seed,$df) NOTE: $df MUST
be positive.

Generate $item cnt deviates of chi square dis-
tribution with $df degrees of freedom.

@return array=&random noncentral chi
($item cnt,$seed,$df,$nonc) NOTE: $df MUST
be at least 1 and $nonc MUST be non-negative.

Generate $item cnt deviates of noncen-
tral chi square distribution with $df degrees of
freedom and noncentrality parameter $nonc.

@return array=&random f
($item cnt,$seed,$dfn,$dfd) NOTE: Both
$dfn and $dfd MUST be positive.

Generate $item cnt deviates of F (variance ra-
tio) distribution with degrees of freedom $dfn
(numerator) and $dfd (denominator).

@return array=&random noncentral f
($item cnt,$seed,$dfn,$dfd,$nonc) NOTE:
$dfn must be at least 1, $dfd MUST be
positive, and $nonc must be non-negative.

Generate $item cnt deviates of noncentral F
(variance ratio) distribution with degrees of
freedom $dfn (numerator) and $dfd (denomi-
nator). $nonc is the noncentrality parameter.

@return array=&random multivariate normal
($item cnt,$seed,\@mean,\@covar) NOTE:
@mean should be of length p array of real
numbers. @covar should be a length p array of
references to length p arrays of real numbers
(i.e. a p by p matrix.

Generate $item cnt deviates of multivari-
ate normal distribution with mean vector
@mean and variance-covariance matrix.

@return array=&random multinomial
($item cnt,$seed,@p) NOTE: $item cnt is
rounded with int() and the result must be
non-negative. The number of elements in @p
must be at least 2.

Returns single observation from multinomial
distribution with $item cnt events classified into
as many categories as the length of @p. The
probability of an event being classified into cat-
egory i is given by ith element of @p. The ob-
servation is an array with length equal to @p,
so when called in a scalar context it returns the
length of @p. The sum of the elements of the
obervation is equal to $item cnt.

7 <SCRIPT> TAG 56

LON-CAPA Function Description
@return array=&random permutation
($seed,@array)

Returns @array randomly permuted.

@return array=&random uniform
($item cnt,$seed,$low,$high) NOTE: $low
must be less than or equal to $high.

Generate $item cnt deviates from a uniform dis-
tribution.

@return array=&random uniform integer
($item cnt,$seed,$low,$high) NOTE: $low and
$high are both passed through int(). $low must
be less than or equal to $high.

Generate $item cnt deviates from a uniform dis-
tribution in integers.

@return array=&random binomial
($item cnt,$seed,$nt,$p) NOTE: $nt is rounded
using int() and the result must be non-negative.
$p must be between 0 and 1 inclusive.

Generate $item cnt deviates from the binomial
distribution with $nt trials and the probabilty
of an event in each trial is $p.

@return array=&random negative binomial
($item cnt,$seed,$ne,$p) NOTE: $ne is rounded
using int() and the result must be positive. $p
must be between 0 and 1 exclusive.

Generate an array of $item cnt outcomes gen-
erated from negative binomial distribution with
$ne events and the probabilty of an event in
each trial is $p.

7.4 Table: CAPA vs. LON-CAPA function differences

CAPA Functions LON-CAPA Differences (if any)
sin(x), cos(x), tan(x) &sin($x), &cos($x), &tan($x)
asin(x), acos(x), atan(x),
atan2(y,x)

&asin($x), &acos($x), &atan($x),
&atan2($y,$x)

log(x), log10(x) &log($x), &log10($x)
exp(x), pow(x,y), sqrt(x) &exp($x), &pow($x,$y), &sqrt($x)
abs(x), sgn(x) &abs($x), &sgn($x)
erf(x), erfc(x) &erf($x), &erfc($x)
ceil(x), floor(x) &ceil($x), &floor($x)
min(...), max(...) &min(...), &max(...)
factorial(n) &factorial($n)
N%M $N%$M
sinh(x), cosh(x), tanh(x) &sinh($x), &cosh($x), &tanh($x)
asinh(x), acosh(x),
atanh(x)

&asinh($x), &acosh($x),
&atanh($x)

/DIS($x,”nn”) &format($x,’nn’) The difference is obvious.
Not in CAPA &prettyprint($x,’nn’,’optional

target’)
Not in CAPA &dollarformat($x,’optional target’)
roundto(x,n) &roundto($x,$n)
web(“a”,”b”,”c”) or
web(a,b,c)

&web(“a”,”b”,”c”) or
&web($a,$b,$c)

html(“a”) or html(a) &html(“a”) or &html($a)

7 <SCRIPT> TAG 57

CAPA Functions LON-CAPA Differences (if any)
jn(m,x) &j0($x), &j1($x), &jn($m,$x),

&jv($y,$x)
In CAPA, j0, j1 and jn are con-
tained in one function, jn(m,x)
where m takes the value of 0,
1 or 2. jv(y,x) is new to LON-
CAPA.

yn(m,x) &y0($x), &y1($x), &yn($m,$x),
&yv($y,$x)

In CAPA, y0, y1 and yn
are contained in one function,
yn(m,x) where m takes the
value of 0, 1 or 2. yv(y,x) is
new to LON-CAPA.

random(l,u,d) &random($l,$u,$d) In CAPA, all the 3 arguments
must be of the same type.
However, now you can mix the
type

choose(i,...) &choose($i,...)

/MAP(seed;w,x,y,z;a,b,c,d)

Option 1 -
&map($seed,[\$w,\$x,\$y,\$z],[$a,$b,$c,$d])
or
Option 2 -
&map($seed,\@mappedArray,[$a,$b,$c,$d])
Option 3 - @mappedArray =
&map($seed,[$a,$b,$c,$d])
Option 4 - ($w,$x,$y,$z) =
&map($seed,\@a)
where $a=’A’
$b=’B’
$c=’B’
$d=’B’
$w, $x, $y, and $z are variables

In CAPA, the arguments are
divided into three groups sep-
arated by a semicolon ;. In
LON-CAPA, the separation is
done by using [] brackets or
using an array @a. Note the
backslash (\) before the argu-
ments in the second and third
groups.

7 <SCRIPT> TAG 58

CAPA Functions LON-CAPA Differences (if any)

rmap(seed;a,b,c,d;w,x,y,z)

Option 1 -
&rmap($seed,[\$w,\$x,\$y,\$z],[$a,$b,$c,$d])
or
Option 2 -
&rmap($seed,\@rmappedArray,[$a,$b,$c,$d])
Option 3 - @rmapped array =
&rmap($seed,[$a,$b,$c,$d])
Option 4 - ($w,$x,$y,$z) =
&rmap($seed,\@a)
where $a=’A’
$b=’B’
$c=’B’
$d=’B’
$w, $x, $y, and $z are variables

In CAPA, the arguments are
divided into three groups sep-
arated by a semicolon ;. In
LON-CAPA, the separation is
done by using [] brackets (with
create an unamed vector ref-
erence) or using an array @a.
Note the backslash (\) before
the arguments in the second
and third groups (Which cause
Perl to send to variable loca-
tions rather than the variable
values, similar to a C pointer).

NOT IMPLEMENTED IN
CAPA

$a=&xmlparse($string) New to LON-CAPA

tex(a,b), tex(“a”,”b”) &tex($a,$b), &tex(“a”,”b”)
var in tex(a) &var in tex($a)
to string(x), to string(x,y) &to string($x), &to string($x,$y)
capa id(), class(), section(),
set(), problem()

&class(), §ion() capa id(), set() and problem()
are no longer used. Currently,
they return a null value.

name(), student number() &name(), &student number()
open date(), due date(),
answer date()

&open date(), &due date(), &an-
swer date()

Output format for time is
changed slightly. If pass noon,
it displays ..pm else it displays
..am. So 23:59 is displayed as
11:59 pm.

get seed(), set seed() Not implemented
sub string(a,b,c) &sub string($a,$b,$c) perl substr

function. However, note the differ-
ences

Perl intrinsic function, sub-
str(string,b,c) starts counting
from 0 (as opposed to 1). In
the example to the left, sub-
str($a,4,4) returns “ome “.

array[xx] @arrayname Array is intrinsic in
perl. To access a specific element
use $arrayname[$n] where $n is the
$n+1 element since the array count
starts from 0

In LON-CAPA, an array is de-
fined by @arrayname. It is not
necessary to specify the dimen-
sion of the array.

7 <SCRIPT> TAG 59

CAPA Functions LON-CAPA Differences (if any)
array moments(B,A) @B=&array moments(@A) In CAPA, the moments are

passed as an array in the first
argument whereas in LON-
CAPA, the array containing
the moments are set equal to
the function.

array max(Name), ar-
ray min(Name)

&min(@Name), &max(@Name) Combined with the min and
max functions defined earlier.

init array(Name) undef @name Use perl intrinsic undef func-
tion.

random normal (re-
turn array,item cnt,seed,av,std dev)

@return array=&random normal
($item cnt,$seed,$av,$std dev)

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random beta (re-
turn array,item cnt,seed,aa,bb)

@return array=&random beta
($item cnt,$seed,$aa,$bb) NOTE:
Both $aa and $bb MUST be greater
than 1.0E-37.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random gamma (re-
turn array,item cnt,seed,a,r)

@return array=&random gamma
($item cnt,$seed,$a,$r) NOTE:
Both $a and $r MUST be positive.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random exponential (re-
turn array,item cnt,seed,av)

@return array=&random exponential
($item cnt,$seed,$av) NOTE: $av
MUST be non-negative.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random poisson (re-
turn array,item cnt,seed,mu)

@return array=&random poisson
($item cnt,$seed,$mu) NOTE: $mu
MUST be non-negative.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random chi (re-
turn array,item cnt,seed,df)

@return array=&random chi
($item cnt,$seed,$df) NOTE:
$df MUST be positive.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random noncentral chi (re-
turn array,item cnt,seed,df,nonc)

@return array=&random noncentral chi
($item cnt,$seed,$df,$nonc) NOTE:
$df MUST be at least 1 and $nonc
MUST be non-negative.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

NOT IMPLEMENTED IN
CAPA

@return array=&random f
($item cnt,$seed,$dfn,$dfd) NOTE:
Both $dfn and $dfd MUST be
positive.

New to LON-CAPA

8 APPENDIX: SYMBOLS IN TEX 60

CAPA Functions LON-CAPA Differences (if any)
NOT IMPLEMENTED IN
CAPA

@return array=&random noncentral f
($item cnt,$seed,$dfn,$dfd,$nonc)
NOTE: $dfn must be at least 1,
$dfd MUST be positive, and $nonc
must be non-negative.

New to LON-CAPA

NOT DOCUMENTED IN
CAPA

@return array=&random multivariate normal
($item cnt,$seed,\@mean,\@covar)
NOTE: @mean should be of length
p array of real numbers. @covar
should be a length p array of
references to length p arrays of real
numbers (i.e. a p by p matrix.

Note the backslash before the
@mean and @covar arrays.

NOT IMPLEMENTED IN
CAPA

@return array=&random multinomial
($item cnt,$seed,@p) NOTE:
$item cnt is rounded with int() and
the result must be non-negative.
The number of elements in @p must
be at least 2.

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random permutation
($seed,@array)

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random uniform
($item cnt,$seed,$low,$high)
NOTE: $low must be less than
or equal to $high.

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random uniform integer
($item cnt,$seed,$low,$high)
NOTE: $low and $high are both
passed through int(). $low must be
less than or equal to $high.

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random binomial
($item cnt,$seed,$nt,$p) NOTE:
$nt is rounded using int() and the
result must be non-negative. $p
must be between 0 and 1 inclusive.

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random negative binomial
($item cnt,$seed,$ne,$p) NOTE:
$ne is rounded using int() and the
result must be positive. $p must be
between 0 and 1 exclusive.

New to LON-CAPA

8 Appendix: Symbols in Tex

8.1 Greek Symbols

If you are viewing this online, copy and paste the text from any of the right columns into
your text area to get the symbol on the left.

8 APPENDIX: SYMBOLS IN TEX 61

Symbol HTML character enties Copy this column
α α or α <m>α</m>

β β or β <m>β</m>

γ γ or γ <m>γ</m>

Γ Γ or Γ <m>Γ</m>

δ δ or δ <m>δ</m>

∆ Δ or Δ <m>Δ</m>

ε ε or ε <m>ϵ</m>

ε <m>ε</m>

ζ ζ or ζ <m>ζ</m>

η η or η <m>η</m>

θ θ or θ <m>θ</m>

ϑ ϑ or ϑ <m>ϑ</m>

Θ Θ or Θ <m>Θ</m>

ι ι or ι <m>ι</m>

κ κ or κ <m>κ</m>

λ λ or λ <m>λ</m>

Λ Λ or Λ <m>Λ</m>

µ μ or μ <m>μ</m>

ν ν or ν <m>ν</m>

ξ ξ or ξ <m>ξ</m>

Ξ Ξ or Ξ <m>Ξ</m>

π π or π <m>π</m>

$ ϖ or ϖ <m>ϖ</m>

Π Π or Π <m>Π</m>

σ σ or σ <m>σ</m>

ς <m>ς</m>

Σ Σ or Σ <m>Σ</m>

τ τ or τ <m>τ</m>

υ υ or υ <m>υ</m>

Υ Υ or Υ <m>Υ</m>

φ φ or φ <m>ϕ</m>

ϕ <m>φ</m>

Φ Φ or Φ <m>Φ</m>

χ χ or χ <m>χ</m>

ψ Ψ or ψ <m>ψ</m>

Ψ Ψ or Ψ <m>Ψ</m>

ω ω or ω <m>ω</m>

Ω Ω or Ω <m>Ω</m>

ρ ρ or ρ <m>ρ</m>

% <m>ϱ</m>

8.2 Other Symbols

If you are viewing this online, copy and paste the text on any of the right columns into your
text area to get the symbol on the left.

8 APPENDIX: SYMBOLS IN TEX 62

Symbol HTML entity Copy this column
± ± or ± <m>\pm</m>

× × or × <m>\times</m>

÷ ÷ or ÷ <m>\div</m>

· · or · <m>\cdot</m>

? <m>\star</m>

◦ ° or °
• • <m>\bullet</m>

† <m>\dag</m>

‡ <m>\ddag</m>

† † <m>\dagger</m>

‡ ‡ <m>\ddagger</m>

c© © or © <m>\copyright</m>

≤ ≤ or ≤ <m>\leq</m>

≥ ≥ or ≥ <m>\geq</m>

6= <m>\neq</m>

� <m>\ll</m>

� <m>\gg</m>

' <m>\simeq</m>

⊥ ⊥ or ⊥ <m>\perp</m>

‖ <m>\parallel</m>

← ← or ← <m>\leftarrow</m>

⇐ ⇐ or ⇐ <m>\Leftarrow</m>

→ → or → <m>\rightarrow</m>

⇒ ⇒ or ⇒ <m>\Rightarrow</m>

↑ ↑ or ↑ <m>\uparrow</m>

⇑ ⇑ or ⇑ <m>\Uparrow</m>

↔ ↔ or ↔ <m>\leftrightarrow</m>

⇔ ⇔ or ⇔ <m>\Leftrightarrow</m>√
√ or √ <m>\surd</m>

∂ ∂ or ∂ <m>∂</m>∑
∑ or ∑ <m>\sum</m>∫
∫ or ∫ <m>\int</m>

∞ ∞ or ∞ <m>∞</m>

