
Learning Online Network with CAPA

Author’s Tutorial And Manual

January 13, 2011

LON-CAPA Group

Michigan State University

1

CONTENTS 2

Contents

1 Introduction to LON-CAPA 5
1.1 About This Manual . 5
1.2 Login as Course Author . 5
1.3 Author Remote Control . 6

2 Creating Content Using LON-CAPA 7
2.1 Description of the Construction Space . 7
2.2 How to Create New Content Pages . 7
2.3 How to Edit Existing Content Pages . 8
2.4 Creating Online Problems Using LON-CAPA 9
2.5 Problem Types . 9
2.6 Foils . 9
2.7 Radio Response Problems . 9
2.8 Option Response Problems . 9
2.9 String Response Problems . 10
2.10 Numerical Response Problems . 10
2.11 Formula Response Problems . 10
2.12 Math Response Problems . 11
2.13 Creating Radio Response Problems . 12

2.13.1 Randomization . 14
2.14 Option Response Problems . 15

2.14.1 Option Response Problems with Concept Groups 15
2.14.2 Example: Concept Group . 15
2.14.3 Example: Matching Problem . 16
2.14.4 Creating Option Problems . 16
2.14.5 Simple Option Response: No Concept Groups 18

2.15 Custom Response Problems . 18
2.16 Creating a String Response Problem . 21
2.17 Creating Numerical Response and Formula Response Problems 21
2.18 Dynamically Generated Plots . 22
2.19 Specifying Curves to Plot . 25
2.20 Color Selection . 28
2.21 General Problem Editing . 28

2.21.1 Adding Picture . 28

3 Printing Your Resources 29
3.1 Printing from Construction Space . 29
3.2 Printing a Subdirectory of Problems . 29
3.3 Tips for Improving Print Output . 30

3.3.1 TeXsize attribute . 30
3.3.2 TeXwidth attribute . 31
3.3.3 TeXDropEmptyColumns attribute . 31
3.3.4 Image TeX attributes . 32
3.3.5 TeX Type attribute . 33
3.3.6 TeX Itemgroup attribute . 33
3.3.7 TeX Item Group Width attribute . 33

CONTENTS 3

3.3.8 TeX Layout attribute . 34
3.4 Troubleshooting PDF Errors . 34

4 Publishing Your Resources 35
4.1 What is Metadata? . 35
4.2 Publishing A Resource . 36

5 Creating A Course: Maps and Sequences 38
5.1 Creating Sequences . 38
5.2 Creating a Simple .sequence With The Simple Editor 39
5.3 Creating a Simple .sequence With The Advanced Editor 40
5.4 Page Maps . 43
5.5 Creating a Course: Top-level Sequence . 43

6 Numerical Response And Formula Response Questions 44
6.1 The Parts of a Numerical Response Problem 44
6.2 Simple Numerical Response Answer . 46
6.3 Simple Script Usage . 46

6.3.1 Variables in Scripts . 47
6.3.2 Variables in the Text Block . 48
6.3.3 Variables in the Answer Block . 48

6.4 Calling Functions . 48
6.4.1 Numerical Response Randomization 49

6.5 Dynamic, Randomized Problems: Putting It All Together 49
6.6 Units, Format . 49
6.7 For More Information . 50
6.8 Formula Response . 50

6.8.1 Sample Specifications . 50
6.8.2 Formula Notes . 51
6.8.3 Example Formula Response . 51

7 Tags Used in XML Authoring 52
7.1 Response Tags . 52

7.1.1 numericalresponse . 52
7.1.2 imageresponse . 53
7.1.3 optionresponse . 53
7.1.4 radiobuttonresponse . 53
7.1.5 dataresponse . 53
7.1.6 externalresponse . 54
7.1.7 Attributes For All Response Tags . 54

7.2 responseparam and parameter . 55
7.3 Foil Structure Tags . 55
7.4 Hint Tags . 55
7.5 Input Tags . 56
7.6 Output Tags . 56
7.7 Internal Tags . 60
7.8 Scripting Tags . 61
7.9 Structure Tags . 61

CONTENTS 4

8 <script> Tag 62
8.1 Supported script functions . 62
8.2 Script Variables . 64
8.3 Table: LON-CAPA functions . 64
8.4 Table: CAPA vs. LON-CAPA function differences 70

9 Bridge Task 74
9.1 Introduction to Bridge Task . 75
9.2 Bridge Task Features . 75
9.3 Creating Bridge Task . 76
9.4 Bridge Task XML Editing . 77

9.4.1 .Task Headers . 78
9.4.2 .Task Parameter and Variable . 78
9.4.3 .Task Questions and Criteria . 80
9.4.4 .Task Finishing Up . 82

9.5 Bridge Task Edit Mode . 82
9.5.1 Introductions . 83
9.5.2 Questions and Criteria . 84
9.5.3 Parameter and Variable . 86
9.5.4 Edit Mode Finishing Up . 87

9.6 Setting Up a Bridge Task . 88
9.6.1 Bridge Task and Slots . 89
9.6.2 Bridge Task and Conditional Resources 89

9.7 Handing In Bridge Task Files . 90

10 Appendix: Symbols in Tex 90
10.1 Greek Symbols . 90
10.2 Other Symbols . 91

1 INTRODUCTION TO LON-CAPA 5

Figure 1: LON-CAPA Log in screen

1 Introduction to LON-CAPA

LON-CAPA is a web-based interface that helps to organize and present your course website,
deliver and manage problems, and manage student enrollment. All author functions are
done through a web browser (Netscape 4.x or higher, a recent Mozilla, or IE 5+ required).

At this time, you should have:

• developed your objectives for your course.

• developed your problems for input into LON-CAPA and determined the appropriate
question formats.

1.1 About This Manual

Throughout this manual, keywords and phrases literally present on the computer screen will
be referred to in bold type. Function names and scripts will be shown in a typewriter

font.
Much of this document can be used as a tutorial that will introduce you to the authoring

system.
For additional help, visit our FAQ at http://help.loncapa.org/.

1.2 Login as Course Author

To begin using LON-CAPA, you first need to log in to your account on LON-CAPA. Open
your web browser and navigate to your local LON-CAPA URL. You will be presented with
a log in screen.

Fill in the Username and Password boxes with your information. Then press the Login
button. This will take you to your LON-CAPA User Roles menu.

1 INTRODUCTION TO LON-CAPA 6

Figure 2: Author Remote Control

Note: Your Username and Password will be given to you by your system administrator.
Both are case sensitive, so make sure you type them with the correct case.

1.3 Author Remote Control

The Author Remote Control will automatically load whenever you log in to LON-CAPA as
the course instructor. The Author Remote Control is a separate window in your browser,
and is automatically sized and placed in the upper left of the screen. The Remote Control
is a tool that allows you to switch between functions and roles within LON-CAPA.

When you move your mouse over the buttons in the remote, the sixteen gray boxes will
show a reminder of what that button does.

• ROLES (CHOOSE ROLE) allows you to select which user role to assume for this
session.

• COM (COMMUNICATION) allows you to access the communication functions in
the system.

• CUSR (USER ROLES) brings up a page that allows you to create new users and
change user privileges.

• CSTR (CONSTRUCT) displays the construction space for your account.

2 CREATING CONTENT USING LON-CAPA 7

• RES (RESOURCE SPACE) allows you to browse the LON-CAPA network direc-
tory.

• SRC (SEARCH LIBRARY) brings up a screen that lets you search the LON-CAPA
resources using multiple criteria.

• PREF (PREFERENCES) brings up a screen that allows you to change some pref-
erences.

• EXIT (LOGOUT) will log you out of the LON-CAPA system.

2 Creating Content Using LON-CAPA

LON-CAPA provides three types of resources for organizing your course website. LON-
CAPA refers to these resources as Content Pages, Problems, and Maps. Maps may be either
of two types: Sequences or Pages. You will use these LON-CAPA resources to build the
outline, or structure, for the presentation of your course to your students.

• A Content Page displays course content. It is essentially a conventional HTML page.
These resources use the extension “.html”.

• A Problem resource represents problems for the students to solve, with answers stored
in the system. These resources are stored in files that must use the extension “.prob-
lem”.

• A Sequence is a type of Map which is used to link other resources together. The users
of this resource can use directional buttons on their remote or the NAV button to follow
the sequence. Sequences are stored in files that must use the extension “.sequence”.
Sequences can contain other sequences and pages.

• A Page is a type of Map which is used to join other resources together into one HTML
page. For example, a page of problems will appears as a problem set. These resources
are stored in files that must use the extension “.page”.

2.1 Description of the Construction Space

The Construction Space is the section of LON-CAPA where you create and manage your
course resources. The figure explains what each button does.

2.2 How to Create New Content Pages

Content Pages are HTML documents that display the course information you are present-
ing.

Many users use tools such as Dreamweaver to create web pages. To upload HTML files
generated with such tools, you can use the Browse button in the Construction Space, locate
your HTML file, and use the Upload File button to create a content page in LON-CAPA.
Remember to upload any graphics your generated web pages may have included.

To create new Content Pages, do the following:

2 CREATING CONTENT USING LON-CAPA 8

Figure 3: Construction Space
Contents of the Construction Space:

Button Name Description

Publish this Resource Opens the Resource Publishing window.
List Directory Lists the contents of the current working directory

Copy Type a new name in the entry box to make a copy the current resource
Browse Helps you select a file to upload

Upload File Uploads the selected file to your Construction Space
Retrieve Old Version Load an older version of a resource if you have multiple versions

Delete Deletes the current resource
Rename Type a new name in the associated entry box to rename a resource

New Subdirectory Type a name in the entry box to create a new directory

1. Click the CSTR button on the LON-CAPA remote. Your web page will change to
your Construction Space.

2. In the Location bar of your browser, type in the full URL of the new Content Page.
Make sure the last part of the URL ends with “.html”, for example,
http://(your library server)/priv/username/new resource.html .
Press the Return or Enter key.

3. Type the content into the editor, OR copy and paste HTML source code obtained
through the use of some other HTML authoring program into the editor.

4. Optionally, click the View button to preview your Content Page.

5. Finally, click the Save this button OR click the Save and then attempt to clean
HTML button.

Repeat this process as many times as necessary to create your Content Pages.
If you’re following this as a tutorial, create at least one content page, which we’ll use later

as raw material. Visit the FAQ at http://help.lon-capa.org/ if you get “unmatched tag”
warnings.

2.3 How to Edit Existing Content Pages

You may edit any Content Pages that have been created.
To edit Content Pages:

1. Click the CSTR button on the LON-CAPA Remote. Your web page will change to
your Construction Space.

2. Click on the link for the name of the Content Page to edit. The Content Page editor
will load and display the current edition of the Content Page.

2 CREATING CONTENT USING LON-CAPA 9

3. Press the Edit button. Edit the HTML code, or copy and paste HTML source code
into the editor.

4. Finally, click the Save this button OR click the Save and then attempt to clean
HTML button. If you do not do this, your work will not be saved.

Once you’ve saved your page, you can click the View button to preview your Content Page.

2.4 Creating Online Problems Using LON-CAPA

If you’re following this as a tutorial, create one of each of these problem types now. We’ll
be using them later as raw material to assemble maps and sequences.

While several problem types are listed here, in LON-CAPA all problems are actually
the same. All problems are written in XML, which can be obtained and edited with the
EditXML button. The problem types listed in this manual are just templates. As your
knowledge advances, you may wish to play with the XML representation directly to see what
you can do.

2.5 Problem Types

In this manual we will cover five basic types of problems: Radio Response, Option Response,
String Response, Numerical Response, and Formula Response. You will need to identify
which types of problem you want to use and create appropriate questions for your course.

The problem editor gives you a testing area where you can try your problems out, with
several different randomizations by varying the Random Seed. If you answer a problem
correctly and can no longer enter new answers, you can get the answer field back by hitting
the Reset Submissions button.

2.6 Foils

In the LON-CAPA system, a Foil is the statement after the drop-down box or radio button
in a Radio Response or Option Response problem. Foils do not need to be text; they can be
images or other resources.

2.7 Radio Response Problems

Radio Response problems present a list of foils with buttons. The student can select one
of these statements by clicking the appropriate radio button.

2.8 Option Response Problems

Option Response problems present foils to the student with drop-down boxes. The student
can select the matching choice for the foils from a list of choices. Optionally, the foils may be
bundled into Concept Groups and the system will select one foil from each group to display
to the student.

By default, the list of options is presented in front of the foils. Using the optional
<drawoptionlist /> tag, the list of options can be embedded into the foil.

2 CREATING CONTENT USING LON-CAPA 10

Figure 4: Formula Response Problem

2.9 String Response Problems

String Response problems allow the student to submit a string of characters for the answer.
Examples of String Response questions are vocabulary tests, short answers and chemical
formulas.

Note that it is easy to abuse String Response problems. For instance, consider the
question “Who wrote ’Huckleberry Finn’?” If you tell the system the answer is “Mark
Twain”, and a student answers “Twain”, the system will mark it wrong. If they answer
“Samuel Clemens”, then the student will definitely get it wrong. There is some room for
flexibility in the string processing, but it can be difficult to get it all correct. Before you use
a String Response problem, be sure you can easily characterize correct answers.

2.10 Numerical Response Problems

Numerical Response problems are answered by entering a number and (optionally) a unit,
such as 2.5 m/sˆ2. Tolerance and required significant digits can be specified as well.

2.11 Formula Response Problems

Formula Response problems ask the student to type in a formula as an answer. If the
answer is 2x2 + 4, the student is allowed to type “2*x*x+4”, “x*x + x*x + 4”, “2*xˆ2 +
14 - 10”, or any other equivalent expression. Formula Response problems have many of the
same characteristics of Numerical Response problems, including the ability to run scripts,
dynamically generate answers, etc.

2 CREATING CONTENT USING LON-CAPA 11

2.12 Math Response Problems

Math Response is a way to have a problem graded based on an algorithm that is executed
inside of a computer algebra system. The use of this response type is generally discouraged,
since the responses will not be analyzable by the LON-CAPA statistics tools.

Which computer algebra system is to be used is specified in the cas argument of the
mathresponse tag; currently, only Maxima is available. LON-CAPA sets up two arrays inside
the computer algebra system: RESPONSE and LONCAPALIST. RESPONSE contains the
student input by component, for example, if ”3,42,17” is entered, RESPONSE[2] would be
42. LONCAPALIST contains the arguments passed in the args of mathresponse.

The answerdisplay is what is displayed when the problem is in ”Show Answer” mode.
The following example illustrates this.

<problem>

<script type="loncapa/perl">

$a1 = random(-6,6,4);

$a2 = random(-6,6,4);

$n1 = random(3,11,2);

$n2 = random(2,10,2);

$function = "$a1*cos($n1*x)+$a2*sin($n2*x)";

$example=&xmlparse(’An example would be <m eval="on">$(sin($n1\cdot x)+cos($n2\cdot x))/\sqrt{2}$</m>’);

</script>

<startouttext />

Give an example of a function

which is orthogonal to <algebra>$function</algebra> with respect to the

scalar product

<m>

\[<g \mid h> =

\frac{1}{\pi} \int_{-\pi}^{\pi}dx g(x) \cdot h(x)\]

</m>

whose norm is 1.

<endouttext />

<mathresponse answerdisplay="$example" cas="maxima" args="$function">

<answer>

overlap:integrate((RESPONSE[1])*(LONCAPALIST[1]),x,-%pi,%pi)/%pi;

norm:integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;

is(overlap=0 and norm=1);

</answer>

<textline readonly="no" size="50" />

<hintgroup showoncorrect="no">

2 CREATING CONTENT USING LON-CAPA 12

<mathhint name="ortho" args="$function" cas="maxima">

<answer>

overlap: integrate((LONCAPALIST[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;

is(not overlap = 0);

</answer>

</mathhint>

<mathhint name="norm" args="$function" cas="maxima">

<answer>

norm: integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;

is(not norm = 1);

</answer>

</mathhint>

<hintpart on="norm">

<startouttext />

The function you have provided does not have a norm of one.

<endouttext />

</hintpart>

<hintpart on="ortho">

<startouttext />

The function you have provided is not orthogonal.

<endouttext />

</hintpart>

</hintgroup>

</mathresponse>

<postanswerdate>

<startouttext />

<p>

Note that with respect to the above norm, <m>$\cos(nx)$</m> is perpendicular

to <m>$\sin(nx)$</m> and perpendicular to <m>$\cos(mx)$</m> for

<m>$n\ne m$</m>.

</p>

<endouttext />

</postanswerdate>

</problem>

2.13 Creating Radio Response Problems

To create a Radio Response problem, create a new resource as described in section 2.2.
This is a “problem” resource so the URL must end in “.problem”. You should see a screen
as in figure 5. You will need to specify the question text and foil statements.

1. In the drop-down option box, select Radio Response Problem, and click the New
Problem button.

2. Click the Edit button above the sample problem to enter edit mode. You should see
an editing screen.

2 CREATING CONTENT USING LON-CAPA 13

Figure 5: Creating A New Problem Resource

Figure 6: Radio Response Creation Form

2 CREATING CONTENT USING LON-CAPA 14

9.

Figure 7: Hint Element

3. In the Text Block at the top of the problem, remove the sample text and type the
question for your problem. Ex: “What is two plus two?”

4. Locate the Response: One of N statements element. In the Max Number of
Shown Foils text box, place the number of foils you wish to display to the student.

5. Locate Foil 1. Remove the text that is in the text box and put the correct answer for
the problem in the Text Block. For example, “Four.” Make sure this is set to true
in the Correct Option field.

6. Below it, you will see Foil 2. Remove the text in the text box and put an incorrect
answer for the problem. Ex: “Purple.” Make sure this is set to false in the Correct
Option field.

7. Repeat the previous step until you’ve filled in all of the other incorrect answers you
wish to offer the students.

8. Once you’ve filled in all of the incorrect answers, change the Correct Options on the
other foils to Unused.

10. Scroll down to the Hint element. Type some text that will help students when they
answer incorrectly. You may delete the hint by selecting Yes from the Delete drop-
down box.

11. Click the Submit Changes button located at the top of the frame. If you do not do
this, your changes will not be saved.

The Correct Option drop down box controls whether or not a given answer will be accepted
as a correct answer. If it is set to true, that answer will be considered a correct answer. Any
number of foils can be marked true, but only one will be shown to any given student. If it
is set to false, it will be considered an incorrect answer. If it is set to Unused, the system
will not use that foil.

2.13.1 Randomization

LON-CAPA will randomize the choices presented to each student and the order they are
presented in. If you wish to present each student the same choices, make sure the Maximum
Number of Shown Foils box contains the number of incorrect answers, which will force
them to all be displayed.

2 CREATING CONTENT USING LON-CAPA 15

Figure 8: Option Response Problem

2.14 Option Response Problems

2.14.1 Option Response Problems with Concept Groups

Each Option Response problem can have three parts:

1. The Concept Groups

2. The options for the students to select, by default “True” and “False”

3. The hint for the student

Each Concept Group has some number of foils representing questions which are conceptu-
ally related. Option Response Problem Templates are available for 4 and 8 Concept Groups.
When the Option Response problem is presented to a student, the LON-CAPA system will
randomly select one foil from each Concept Group and present it to the student. In order
to receive credit for the problem, the student must select the corresponding option from the
drop-down box for each given foil.

2.14.2 Example: Concept Group

A Concept Group may contain the following True/False questions:

• “Mark Twain” is the pen name of Samuel Clemens.

• Mark Twain wrote “The Call of the Wild”.

• Mark Twain wrote “Huckleberry Finn”.

• Mark Twain spent most of his life in the Congo.

For each foil, the author marks it true or false. When the student logs on and attempts
to answer this question, the student will see only one of the four choices for that Concept
Group. They then go on to do the remaining three to seven Concept Groups in this question
before submitting their answer.

2 CREATING CONTENT USING LON-CAPA 16

2.14.3 Example: Matching Problem

Option Response problems can be used as matching problems.
For example, you might want to ask the student to match musical compositions with

their composers. You could create an Option Response problem with 4 Concept Groups,
and place the following four foil groups each in its own concept group:

• Claire de Lune, Ballade (Debussy)

• The Pastoral Symphony, The Ninth Symphony (Beethoven)

• Sleeping Beauty Suite, The Dance of the Sugar Plum Fairies (Tchaikovsky)

• Slavonic Dances, New World Symphony (Dvorak)

You could then add the following options to the option list:

• Debussy

• Beethoven

• Schubert

• Tchaikovsky

• Dvorak

The same answers can be used more than once, or not at all, as you see fit. It is conventional
to place such a warning in the Text Block describing the problem to the students.

2.14.4 Creating Option Problems

To create an Option Response problem, create a new resource as described in section 2.2.
This is a “problem” resource so the URL must end in “.problem”. You should see a screen
as in figure “Option Response Editor”.

1. In the drop-down option box as seen in figure 5, select Option Response Problem
with N Concept Groups, where N is the number of Concept Groups you wish the
problem to have, and click the New Problem button.

2. Click the Edit button above the sample problem to enter edit mode. You should see
the Option Response page open up.

3. Replace the text in the Text Block with text that explains the conditions for your
problem.

4. Locate the Max Number of Shown Foils element and type a number from 1 to 8
to display that number of questions. You cannot display more than one foil from each
concept group, so this option will only reduce the number of foils displayed, if it is less
than the number of concept groups in your Option Response problem.

2 CREATING CONTENT USING LON-CAPA 17

Figure 9: Option Response Editor

5. Now you must define the options the students can select. For each option you wish to
add to the Option Response question, type the option into the Add new Option box
in the Select Options section, then hit the Save Changes button. If you do not hit
the Save Changes button, your option will not be selectable below. (You can delete
unwanted options in the last step.)

6. Now, you need to define the question foils. Look for the foil with the name “One”.
Type the question into the text box and select the correct option for that question
from the Correct Option drop-down menu. Click Submit Changes to save this
question foil. Repeat this step for all remaining foils.

7. Locate the foils that are not being used. In their Delete menus, set the value to
Yes. Once you’ve set the Delete menu value correctly for all the foils, click the Save
Changes button.

8. In the Hint area, provide a helpful hint for users who get the problem incorrect, and
click the Save Changes button.

9. Make sure all the options you want to delete are not used for any of your foils. If a
deleted option is used in a foil, it will appear in a text box in the Correct Option area
for that foil. To make the drop-down box reappear, type an option already defined in
the Select Options field, and hit Submit Changes. A drop-down box will reappear.
To delete the irrelevant options from the Option Response question, select that option
from the Delete an Option drop down, and hit the Save Changes button. Do this
for each option you wish to remove.

2 CREATING CONTENT USING LON-CAPA 18

2.14.5 Simple Option Response: No Concept Groups

If you select Simple Option Response from the drop-down box, you will get a template
that will allow you to enter up to eight foils with no grouping. The system will randomly
mix these foils when presenting them to the student. You can have more foils than the Max
Num of Shown Foils so that each student will not have the identical foils.

2.15 Custom Response Problems

Custom Response is a way to have a problem graded based on an algorithm. The use of
this response type is generally discouraged, since the responses will not be analyzable by the
LON-CAPA statistics tools.

For a single textfield, the student’s answer will be in a variable $submission. If the
Custom Response has multiple textfields, the answers will be in an array reference, and can
be accessed as $$submission[0], $$submission[1], etc.

The student answer needs to be evaluated by Perl code inside the ¡answer¿-tag. Custom
Response needs to return a standard LON-CAPA. The most common response are:

• EXACT ANS: return if solved exactly correctly

• APPROX ANS: return if solved approximately

• INCORRECT: return if not correct, uses up a try

• ASSIGNED SCORE: partial credit (also return the credit factor, e.g. return(ASSIGNED SCORE,0.3);)

• SIG FAIL, NO UNIT, EXTRA ANSWER, MISSING ANSWER, BAD FORMULA,
WANTED NUMERIC: return if not correct for different reasons, does not use up a try

The answer display is shown instead of the student response in ’show answer’ mode. The
following example illustrates this:

<problem>

<startouttext />Accept an answer of around 90 or -90<endouttext />

<customresponse answerdisplay="something near 90 or -90">

<answer type="loncapa/perl">

We do not want a vector

if ($submission=~/\,/) { return ’EXTRA_ANSWER’; }

Need a numerical answer here

if ($submission!~/^[\d\.\-\e]+$/i) { return ’WANTED_NUMERIC’; }

$difference=abs(90-abs($submission));

if ($difference==0) { return ’EXACT_ANS’; }

if ($difference < 0.1) { return ’APPROX_ANS’; }

return ’INCORRECT’;</answer>

<textline readonly="no" />

</customresponse>

</problem>

Full list of possible return codes:

• EXACT ANS: student is exactly correct

2 CREATING CONTENT USING LON-CAPA 19

• APPROX ANS: student is approximately correct

• NO RESPONSE: student submitted no response

• MISSING ANSWER: student submitted some but not all parts of a response

• EXTRA ANSWER: student submitted a vector of values when a scalar was expected

• WANTED NUMERIC: expected a numeric answer and didn’t get one

• SIG FAIL: incorrect number of Significant Figures

• UNIT FAIL: incorrect unit

• UNIT NOTNEEDED: submitted a unit when one shouldn’t

• UNIT INVALID INSTRUCTOR: the unit provided by the author of the problem is
unparsable

• UNIT INVALID STUDENT: the unit provided by the student is unparasable

• UNIT IRRECONCIBLE: the unit from the student and the instructor are of different
types

• NO UNIT: needed a unit but none was submitted

• BAD FORMULA: syntax error in submitted formula

• INCORRECT: answer was wrong

• SUBMITTED: submission wasn’t graded

• DRAFT: submission only stored

• MISORDERED RANK: student submitted a poorly order rank response

• ERROR: unable to get a grade

• ASSIGNED SCORE: partial credit; the customresponse needs to return the award
followed by the partial credit factor

• TOO LONG: answer submission was deemed too long

• INVALID FILETYPE: student tried to upload a file that was of an extension that was
not specifically allowed

• COMMA FAIL: answer requires the use of comma grouping and it wasn’t provided or
was incorrect

2 CREATING CONTENT USING LON-CAPA 20

Figure 10: String Response Editor

2 CREATING CONTENT USING LON-CAPA 21

2.16 Creating a String Response Problem

To create a String Response problem, create a new resource (described in 2.2). This is a
“problem” resource so the URL must end in “.problem”.

1. In the drop-down option box as seen in 5, select String Response Problem, and
click the New Problem button.

2. Click the Edit button above the sample problem to enter edit mode. You should see
the String Response editor page open up, which should look something like what you
see in the “String Response Editor” figure.

3. Clear the text from the Text Block at the top of the problem, and type in your
problem.

4. In the Answer Box, type the correct answer.

5. Select the answer condition from the drop-down. There are three cases to choose from:

(a) cs: This means “Case Sensitive”. For example, this is useful in chemistry, where
HO and Ho are completely different answers. The student must match the case
of the answer.

(b) ci: This means “Case Insensitive”. The system does not use the case of the
letters to determine the correctness of the answer. If the correct answer is “car”,
the system will accept “car”, “CAR”, “Car”, “caR”, etc.

(c) mc: This means “Multiple Choice”. The student’s answers must contain the
same letters as the question author’s, but order is unimportant. This is usually
used to give a multiple choice question in the question’s Text Block, which may
have several correct parts. If the author sets the correct answer as “bcg”, the
system will accept “bcg”, “cbg”, “gcb”, etc., but not “bc” or “abcg”.

It is conventional to inform the students if the problem is case sensitive, or that the
order of the answers doesn’t matter.

6. Optionally, locate the Single Line Text Entry Area block and set a length in the
Size box. This will only affect the size of the box on the screen; if you set the box size
to 2, the student can still enter 3 or more letters in their answer.

7. Scroll down to the Hint element, and type some text that will help students when
they answer incorrectly, or delete the hint by setting the Delete field to Yes.

8. Click the Submit Changes button.

2.17 Creating Numerical Response and Formula Response Prob-
lems

Numerical Response problems are answered by entering a number and an optional unit. For
instance, a numerical response problem might have an answer of 2m/s2. Formula Response
problems are answered by entering a mathematical formula. For instance, a formula response

2 CREATING CONTENT USING LON-CAPA 22

problem might have an answer of x2 +11. The answer may be in any equivalent format. For
instance, for x2 + 11, the system will also accept x ∗ x+ 11 or x2 + 21− 10.

Creating Numerical Response and Formula Response problems starts the same as the
other problem types, but because of the power of Numerical Response and Formula Response
problems, they are covered in their own section after the end of the tutorial. For more
information about these problem types, please see section 6 for Numerical Response problems
and section 2.11 for Formula Response problems.

2.18 Dynamically Generated Plots

The gnuplot tag allows an author to design a plot which is created when it is viewed. This
is intended for use in homework problems where each student needs to see a distinct plot.
It can be used in conjunction with a script tag to generate random plots.

The following parameters may be set:

• brief description of the plot This text is used as the alt parameter of the img

tag used to embed the plot.

• background color of image (xffffff) See the section on color selection 2.20 for
help on specifying colors.

• foreground color of image (x000000) See the section on color selection 2.20 for
help on specifying colors.

• height of image (pixels)

• width of image (pixels)

• Size of font to use “small”, “medium”, or “large”. The font used for any text on
the plot is set with this tag.

• Transparent image “Yes” or “No”. If the image is transparent the background color
will be ignored.

• Display grid “Yes” or “No”.

• Number of samples for non-data plots If a function 2.19 tag is used to specify
the curve 2.19, this indicates the number of sample points to use.

• Draw border around plot “Yes” or “No”

• alignment for image in html “Left”, “Center”, or “Right”. This is the value used
for the align parameter in the img tag which embeds the plot in the problem.

• Width of plot when printed (mm) The width in mm of the plot when it is printed.
The default is approximately one half of a U.S. letter size page, 93 mm.

• Font size to use in TeX output (pts) The size in points of text on the graph
when it is printed out.

• Plot type “Cartesian” or “Polar”.

2 CREATING CONTENT USING LON-CAPA 23

• margin width (pts) The left, right, top, or bottom margin width measured in points.

• Size of major tic marks The size of the larger tic marks on the plot border or axes,
measured in graph units.

• Size of minor tic marks The size of the smaller tic marks on the plot border or
axes, measured in graph units.

The gnuplot tag allows the use of the the following tags:

• curve 2.19

• key 2.18

• label 2.18

• axes 2.18

• tics 2.18

• title, xlabel, and ylabel 2.18

Three of the more basic tags are title, xlabel, and ylabel. Their size and color depend
on the values chosen for the font size and graph foreground color specified in the gnuplot
2.18 tag. The figure below shows the locations of the various labels.

The Plot Axes tag allows you to specify the domain and range of the data to display.
It is closely tied with the Plot Ticks 2.18 tags, which specify where the gridlines are drawn
on the plot. The Plot Axes tag sets the following parameters:

The color of grid lines
If the “Display Grid” parameter of the Gnuplot tag is set to yes, the grid will be displayed

in the specified color. Hexadecimal notation is used to specify the color 2.20.
The view of the graph shown
The viewing rectangle of the graph is set with the following parameters:

• minimum x-value

• maximum x-value

• minimum y-value

2 CREATING CONTENT USING LON-CAPA 24

• maximum y-value

See also Plot Ticks 2.18 and the general Gnuplot help 2.18.
The xtics and ytics tags can be inserted by selecting the Plot tics item from the insert

selection list of the gnuplot tag.
The xtics and ytics tags have identical structure and the description presented here

applies to both.
The tics tags allow specification of the following parameters:

• Location of major tic marks “Border” or “Axis”. Tic marks can be placed on the
border or on the axes. The images below illustrate the effects of each of these options.

• Mirror tics on opposite axis? “Yes” or “No”. If the location of tic marks
is set to “border” this parameter determines if they are shown on both the top and
bottom or right and left sides of the graph. The “mirror” tic marks are unlabelled.

• Start major tics at

The point in graph coordinates which to start making major tics. This may be less
than or greater than the lower limit for the axis.

• Place a major tic every

The span, in graph coordinates, between each major tic mark.

• Stop major tics at

This may be less than or greater than the upper limit for the axis.

2 CREATING CONTENT USING LON-CAPA 25

• Number of minor tics between major tic marks

The number of subdivisions to make of the span between major tic marks. Using a
value of “10” leads to 9 minor tic marks. The example below uses a value of “5” to
produce 4 tic marks.

The key tag causes a key to be drawn on the plot when it is generated. The key will
contain an entry for each curve 2.19 which has a name.

The key is the color of the foreground of the plot, specified in the gnuplot 2.18 tag.
The label tag allows the author to place text at any position on the plot. There may

be many label tags on one plot and all the labels which fall within the plot will show. The
color used will be to foreground color of the plot and the font will be the size specified for
the plot, both of which are set in the gnuplot 2.18 tag.

• justification of the label text on the plot “left”, “right”, or “center”.

• rotation of label (degrees)

• x position of label (graph coordinates)

• y position of label (graph coordinates)

The text to be placed on the plot must be entered as well.

2.19 Specifying Curves to Plot

The curve tag is where you set the data to be plotted by gnuplot.
The following parameters may be set:

• color of curve

The color of the curve on the plot. See Selecting Colors 2.20.

• name of curve to appear in key

If a key is present, the name of the curve will appear with a sample of its line type.

• line style

See the section on line styles 2.19 for more information about the available line styles
and their data requirements.

2 CREATING CONTENT USING LON-CAPA 26

• line type

The type of line. Current options include ’solid’ and ’dashed’. At this time, all dashed
lines draw with line width of ’1’ in web output. This parameter may not apply to all
linestyles.

• line width

The thickness of the line drawn by plotting engine. This parameter may not apply to
all linestyles.

• point type

This parameter may not apply to all linestyles.

• point size

This parameter may not apply to all linestyles. The size of the points, in pixels, present
on the line. Some point types are not affected by this parameter.

There are two ways of entering the information to be plotted, which are accessed using
the subtags of curve, data 2.19 and function 2.19.

The data tag is used to specify the values plotted in the gnuplot 2.18 tag. The data
tag is only used in the Curve 2.19 tag.

The data must be either a perl array, @X, or a comma seperated list, such as “0.5,0.9,1.5,
2.4” (without quotes). ’NaN’ is a valid value.

The function and number data tags required varies based on the line style 2.19 chosen
for the curve. In all cases the first data tag will hold the “X” values and the second will
hold the “Y” values.

All of the data sets in the data tag must have the same number of elements.
The function tag allows you to specify the curve to be plotted as a formula, instead of

numerical data.
The function must be a mathematical expression. Use the independent variable “x” for

cartesian plots and “t” for polar plots. Implicit multiplication is not accepted by Gnuplot.
The following are examples of valid functions and invalid functions:

• sin(x)

• sin(2*x)

• sin(x**2)

• exp(x)

• 3*x**x

• exp(sin(2*x))

• sinh(x)

• sin(t)*cos(t) (polar plot only)

Unless otherwise noted the linestyles require only 2 data sets, X and Y.

2 CREATING CONTENT USING LON-CAPA 27

• lines Connect adjacent points with straight line segments.

• points Display a small marker at each point.

• linespoints Draw both lines and points.

Draws a small symbol at each point and then connects adjacent points with straight
line segments.

• dots Place a tiny dots on the given points.

• steps Connect points with horizontal lines.

This style connects consecutive points with two line segments: the first from (x1,y1)
to (x2,y1) and the second from (x2,y1) to (x2,y2).

• fsteps Connect data with horizontal lines.

This style connects consecutive points with two line segments: the first from (x1,y1)
to (x1,y2) and the second from (x1,y2) to (x2,y2).

• histeps Plot as histogram.

Y-values are assumed to be centered at the x-values; the point at x1 is represented as a
horizontal line from ((x0+x1)/2,y1) to ((x1+x2)/2,y1). The lines representing the end
points are extended so that the step is centered on at x. Adjacent points are connected
by a vertical line at their average x, that is, from ((x1+x2)/2,y1) to ((x1+x2)/2,y2).

• errorbars Same as yerrorbars.

• xerrorbars Draw horizontal error bars around the points.

Requires 3 or 4 data sets. Either X, Y, Xdelta or X, Y, Xlower, Xupper. Xdelta is a
change relative to the given X value. The Xlower and Xupper values are absolute grid
coordinates of the upper and lower values to indicated with error bars.

• yerrorbars Draw vertical error bars around the points.

Requires 3 or 4 data sets. Either X, Y, Ydelta or X, Y, Ylower, Yupper. Ydelta is
a change relative to the given Y value. The Ylower and Yupper values are the grid
coordinates of the upper and lower values to indicate with error bars.

• xyerrorbars Draw both vertical and horizontal error bars around the points.

Requires 4 or 6 data sets. Either X, Y, Xdelta, Ydelta or X, Y, Xlower, Xupper,
Ylower, Yupper. Xdelta and Ydelta are relative to the given coordinates. Xlower,
Xupper, Ylower, and Yupper are the grid coordinates of the upper and lower values to
indicate with the error bars.

• boxes Draw a box from the X-axis to the Y-value given.

Requires either 2 or 3 data sets. Either X, Y or X, Y, Xwidth. In the first case
the boxes will be drawn next to eachother. In the latter case Xwidth indicates the
horizontal width of the box for the given coordinate.

2 CREATING CONTENT USING LON-CAPA 28

• vector Draws a vector field based on the given data.

Requires 4 data sets, X, Y, Xdelta, and Ydelta. The ‘vector‘ style draws a vector from
(X,Y) to (X+Xdelta,Y+Ydelta). It also draws a small arrowhead at the end of the
vector. May not be fully supported by gnuplot.

2.20 Color Selection

The default colors are a white background (xffffff) with black (x000000) forground, gridlines,
and curve.

• Background color is an attribute of the gnuplot tag 2.18. This controls the color of the
plot image. The default is white (xffffff).

• Forground color is an attribute of the gnuplot tag 2.18. This controls the color of the
border.

• Gridline color is an attribute of the axis tag 2.18.

• Curve color is an attribute of the curve tag 2.19. This is the color of the curve function
or data points. Different curves can be given different colors.

2.21 General Problem Editing

The following capabilities are available in all problem types:

2.21.1 Adding Picture

To add a picture to a problem, the picture must first be uploaded to your construction space,
then published. Then, in the text area of your problem, add the following:

where DOMAIN is the domain the picture is in, AUTHOR is the person who published
the picture, and the rest is the standard path to the picture.

It is also possible for advanced users to use a script variable in the place of the picture
URL, like this:

and use the string variable $picture in the script of the problem to select from several
possible pictures. If you do this, you will need to Edit XML for the problem and add the
various graphics used in the problem to the ¡allow¿ tags on the bottom.

When print resources with pictures, LON-CAPA will automatically convert graphics in
EPS files. (EPS is a graphics format designed for printing.)

The automatic conversion of a web graphic to an EPS file will sometimes look blocky,
because paper has a much higher resolution then the web. If you would like to provide LON-
CAPA with an EPS file to use while printing for a given graphic file, upload your EPS file
into your authoring space with the same name as the .gif, .jpg, or other web graphic, except
ending with the extension “.eps”. When you publish the file, LON-CAPA will automatically
use it in place of the web image file when printing.

For instance, if you have a graphics file my.image.gif, you can upload an EPS file named
my.image.eps.

3 PRINTING YOUR RESOURCES 29

3 Printing Your Resources

3.1 Printing from Construction Space

To print a resource, do the following:

1. The icon will only be accessible when you are looking at one of your resources for
your course.

2. Click to access the Print Helper, which will help you create a PDF document.

The Print helper will guide you through the process of preparing a PDF document of the
resource. If you see error message when trying to prepare a PDF file, then you will need to
contact the author of the problem which contains that printing error.

Printing involves a translation of your XML file into LaTeX and from there to PDF.
Some of the XML tags have a set of special print options, see 3.3. Sometimes translations
require special considerations, see 3.4.

3.2 Printing a Subdirectory of Problems

Many authors organize their construction space or a directory in their construction space
as a problem library. To print out an entire directory of problems to a PDF file, follow the
steps below:

1. First, select to a PDF file, select one of the problems to view.

2. Click PRT on the Inline Menu or Remote Control.

3. Select the option to print all ’Problems from current subdirectory.’

4. Optionally, choose to print the library with Answers. You can choose to print with
either the default two column output or with one column.

5. Click the Next button.

6. On the next screen, select which problems you want to print by either clicking on one
of the Select buttons or individually checking which problems you want to select.

7. Click the Next button.

8. As long as there were no errors in any of the problems, you should now see a link to a
PDF file that you can download and view.

If an error occurs with just one of the problems then entire directory will not be able to
print. LON-CAPA will make a guess at which problem(s) had errors. You will need to
troubleshoot and fix those problems before the entire directory can be printed. Information
about common print errors is available at 3.4.

3 PRINTING YOUR RESOURCES 30

3.3 Tips for Improving Print Output

Here you can find some useful tips how to make your printing output looking prettier.
Print output oriented attributes of standard HTML/LON CAPA tags

• 3.3.1 <h1>-<hN> TeXsize attribute

• 3.3.1 <basefont> TeXsize attribute

• 3.3.1 TeXsize attribute

• 3.3.2 <hr> TeXwidth attribute

• 3.3.2 <table> TeXwidth attribute

• 3.3.3 <table> TeXDropEmptyColumns attribute

• 3.3.2 <td> TeXwidth attribute

• 3.3.2 <th> TeXwidth attribute

• 3.3.4 TeXwidth attribute

• 3.3.4 TeXheight attribute

• 3.3.4 TeXwrap attribute This attribute controls how the generated LaTeX
attempts to wrap text around figures when a horizontal alignment has been requested
in the IMG tag. Unfortunately, LATEXis not really built to do this and there are no
known perfect solutions. This attribute has two possible values:

– texwrap - (the default) uses the texwrap environment to attemp to get text to
wrap around the picture. This requires either a “left” or “right” alignment, and
works well in most cases.

– parpic - uses the picins package \parpic to attempt to get text to wrap around the
image. This method places the remainder of the text of the paragraph containing
the picture to the left or right of the picture. This scheme has two drawbacks: If
the remainder of the paragraph text is insufficient to fill the area to the side of the
image, the text from the following paragraph will run through the image, parpic
also seems to not do a good job of honoring the end of the page, and images can
spill below the page footers generated by Lon-CAPA.

3.3.1 TeXsize attribute

TeXsize attribute in <h1>-<hN>,<basefont>, and tags declares the size of LaTeX
fonts used in printing.

Possible values of TeXsize attribute:

3 PRINTING YOUR RESOURCES 31

tiny smallest

scriptsize very small

footnotesize smaller

small small

normalsize normal
large large
Large larger

LARGE even larger
huge still larger
Huge largest

Note, that all parameters coincide with standard LaTeX commands for changing font
size though you do not escape them.

Examples:

<basefont size="4" TeXsize="Large" />

<h1 align="center" TeXsize="Huge">

3.3.2 TeXwidth attribute

TeXwidth attribute allows you to specify the width of

• the table in <table> tag

• the table cell in <td> or <th> tags

• the length of the line in <hr> tag

You can use the following units:

mm
cm =10 mm
in =25.4 mm
pt =0.35 mm
pc =4.22 mm

Examples:

<hr TeXwidth="2 cm">

<td TeXwidth="1 in">

3.3.3 TeXDropEmptyColumns attribute

TeXDropEmptyColumns attribute allows you to supress printing of empty columns in
table. This option is useful when you have deal with big tables (very often nested) with a lot
of empty columns. Situation is typical in chemistry where tables are used for visualization
of chemical reactions.

Example:

<table TeXDropEmptyColumns="yes">

3 PRINTING YOUR RESOURCES 32

3.3.4 Image TeX attributes

• Image Url contains the URL of the image to be inserted in the problem. You may
enter a URL or click “Select” to choose an image that has already been uploaded to
your construction space, or click “Search”

• Description contains a textual description of the image. If the image cannot be rendered
by the target browser, this description is displayed instead.

• width (pixel) allows you to set the width of the image, in pixels, as it will be displayed
in a web browser.

• height (pixel) allows you to set the height of the image, in pixels, as it will be displayed
in a web browser.

• TeXwidth (mm) Allows you to set the width of the image, in mm, as it will be rendered
into the LATEXdocument used to print the problem.

• TeXheight (mm) Allows you to set the height of the image, in mm, as it will be rendered
intot he LATEXdocument used to print the problem.

• TeXwrap Allows you to select how the LATEXdocument will attempt to wrap text
around a horizontally aligned image (See Alignment below).

parbox \newline and \parbox will be used to place the image. This method ensures
that text will not be wrapped on top of the image, however very little text will
appear next to the image itself.

parpic The picins package \parpic command will be used to place the image. This
will wrap the remainder of the paragraph containing the picture around the image.
If, however, there is insufficient text to fill the space to the left or right of the
image, the next paragraph may be wrapped on top of the image. In addition,
\parpic does not always honor the end of the page, causing the image to extend
below the page footer.

• Alignment Specifies the alignment of the image relative to the enclosing text paragraph:

bottom The image will be aligned so that its bottom will be at the baseline of the
surrounding text.

middle The image will be aligned so that its center-line will be at the baseline of the
surrounding text.

top The image will be aligned so that its top will be at the baseline of the surrounding
text.

left The image will be placed so that it is at the left of the surrounding text. The
surrounding text will fill in the region to the right of the image.

right The image will be placed so that it is at the right of the surrounding text. The
surrounding text will fill in the region to the left of the image.

3 PRINTING YOUR RESOURCES 33

3.3.5 TeX Type attribute

TeXtype attribute is responsible for the definition of the type of LaTeX list environment
used during printing of available options. Possible values of this attribute:

TeXtype attribute is responsible for the definition of the type of LaTeX list environment
used during printing of available options. Possible values of this attribute:

value example of list
1 1. First Item

2. Second Item

3. Third Item
A A. First Item

B. Second Item

C. Third Item
a a. First Item

b. Second Item

c. Third Item
i i. First Item

ii. Second Item

iii. Third Item

Examples:

<radiobuttonresponse TeXtype="1">

<radiobuttonresponse TeXtype="A">

3.3.6 TeX Itemgroup attribute

TeXitemgroupwidth attribute allows you to specify the width of table with items for
matching. The value of this attribute defines the width in percents with respect to text line
width.

<matchresponse TeXitemgroupwidth="40\%">

3.3.7 TeX Item Group Width attribute

TeXitemgroupwidth attribute allows you to specify the width of table with items for
matching. The value of this attribute defines the width in percents with respect to text line
width.

<matchresponse TeXitemgroupwidth="40%">

3 PRINTING YOUR RESOURCES 34

3.3.8 TeX Layout attribute

TeXlayout attribute governs the way how available options are displayed when printed -
either vertically (attribute value - ”vertical”) or horizontally (attribute value - ”horizontal).

Examples:

<optionresponse TeXlayout="horizontal">

<optionresponse TeXlayout="vertical">

3.4 Troubleshooting PDF Errors

When you print a LON-CAPA resource, the XML of your resource is translated into LaTeX.
The LaTeX is then processed and turned into a PDF document which can be displayed with
your browser’s Acrobat plugin and subsequently printed.

There are several problems that crop up both due to limitations in the XML to LaTeX
translation and due to differences in the model used by web browsers to render HTML and
LaTeX to compose print pages. This document provides information about some of these
problems and, where possible, solutions, and tricks to work around them. If you have a
printing trick or a problem and would like to report it, please go to http://bugs.lon-capa.org
and register a bug report.

General information about printing within LonCAPA is also available: 3.1
The print rendition of some Perl functions looks ugly
In particular these functions are:

• &prettyprint

• &dollarformat

• &xmlparse

• &chemparse

To make these two functions work correctly within the print translator, it is necessary to
wrap them within a ¡display¿ tag. For example:

<p>

If I had <display>&prettyprint(100,’$2f’)</display>

</p>

Note that the <display> tags must be tightly wrapped around the function call or you
will get a syntax error in web presentation mode. For additional information about cases
where you must use <display>, see “Variables with tags don’t print correctly” below.

Image placement and alignment and text wrapping is wrong
Unfortunately this is due to a large difference between the LaTeX and HTML page layout

model. In HTML images are placed exactly where you ask them to be placed. In LaTeX,
images are considered floats, which LaTeX will place for you. Some of the common html
tricks, using tables e.g. to control text wrapping around figures, will not always work in
print mode; especially if the text is to the right side of the figure in the table.

The alignment choice affects whether or not the print rendering engine attempts to get
text to wrap around the image. With align=‘‘right’’ or align=‘‘left’’, the print

4 PUBLISHING YOUR RESOURCES 35

rendering engine attempts to use the wrapfigure environment to place text around the figure
at the appropriate side. If a figure is in a table, then the print engine, by default, the print
engine will use wrapfigure, set the alignment to “right” unless you override it. Otherwise,
the default alignment is “bottom” as it is for html, and no wrapping will occur.

\parpic style wrapping is also available by specifying TeXwrap=‘‘parpic’’ in the ¡img¿
tag. In some limited casese this gives a better result.

Other print specific ¡img¿ tag attributes are available. 3.3.
Variables with tags don’t print correctly
If a variable contains XML, in general it is necessary to force the XML parser to make

a pass over the contents of the contents of the variable prior to rendering the section of the
resource that contains that substitution. When output, those variables must be bracketed
inside of <display> </display> tags. For example:

<problem>

<script type="loncapa/perl">

$a = &xmlparse(’
’);

</script>

<startouttext />

<p>This is a break <display>$a</display> and then some more text</p>

<endouttext />

</problem>

Without the xmlparse call and the display tag bracketing the variable, this problem will
display on the web just fine, but print incorrectly.

4 Publishing Your Resources

In order to make the content you’ve created available for use in courses, you must publish
your content. LON-CAPA provides an easy interface for publishing your content pages,
problem resources, and sequences. You can specify title, author information, keywords, and
other metadata. LON-CAPA uses this metadata for many things, and it’s important to fill
the metadata out as accurately as possible.

4.1 What is Metadata?

Metadata is data about data. Metadata can often be thought of as a label on some bit
of information that can be useful to people or computer programs trying to use the data.
Without metadata, the person or computer trying to use the original information would have
to guess what the original data is about.

When resources are published at least title, subject and keywords should be provided so
that the resource could be found easily.

For example, if you create a problem and neglect to say in the title or subject of the
problem what it is about, then a human who wants to use that problem would have to read
the problem itself to see what it was about. This is much more difficult than just reading
a title. A computer trying to do the same thing would be out of luck; it is too stupid to
understand the problem statement at all.

4 PUBLISHING YOUR RESOURCES 36

Figure 11: Construction Space for Publishing

Another example of metadata is the ¡title¿ tag of a web page, which usually shows up
in the title bar of the browser. That is information about the web page itself and is not
actually part of the web page. People use the title information when they bookmark a page.
Search engines use it as a clue about the content of the web page.

4.2 Publishing A Resource

To publish a resource, log in and choose your Author role. Then click CSTR to go to your
construction space. You should see something like the “Construction Space for Publishing”.
Click on the Publish button for the resource you wish to publish. You will get a metadata
screen that should look something like the “Publishing Metadata Screen” figure. Fill out the
form. If you are creating resources that may be used in several courses, you should talk with
the other authors and establish some sort of standard title and subject scheme in advance.

Language is the language the problem is written in. Publisher/Owner is the LON-
CAPA user who owns the problem.

Keywords and Abstract are more information about the problem.
The Keywords are words that are strongly connected to your problem; for instance a

physics problem about a pulley might include “pulley” as a key word. LON-CAPA pulls
out words used in the text of the resource for you so you can just click on their check boxes
to make them keywords. Additional keywords allows you to add any keyword to your
problem that are not actually in the problem. For instance, on that same problem a physicist
might add the keyword “statics”, even though it doesn’t appear in the original problem,
because Physics uses that as a classification of problem type. Additional Keywords are
also useful when publishing graphics.

You need to set the copyright and distribution permissions in the COPYRIGHT/DISTRIBUTION
drop-down. This setting controls who is allowed to use your resource as follows:

• System Wide - can be used for any courses system wide is the default. The
content can be used for any course within the network, regardless of the domain.
Instructors all over the world can find your content and use it in their courses. Once
an instructor has selected a resource, the students in the course can have access to it.

4 PUBLISHING YOUR RESOURCES 37

Figure 12: Publishing Metadata Screen

5 CREATING A COURSE: MAPS AND SEQUENCES 38

Figure 13: Map Editor Selection

• Domain - Limited to courses in the domain published means that only courses
running in the same domain as you can use your content.

• Private - visible to author only is not supported anymore. Use Customized right
of use instead.

• Public - no authentication required means anyone can find and use the resource
- even without being logged in to the system.

• Customized right of use means that access to the resource is controlled by a separate
Custom Rights file. This file needs to be specified during publication. You can edit
a Custom Rights file in your author space, and need to publish it like any other file.
Any number of your resource can point at the same Custom Rights file - if you want
to change access rights for all of them, you just need to change and re-publish this one
file.

Not all of these choices may be visible, depending on the nature of the resource.
Now when you click Finalize Publication, your resource will be published and usable

(unless you set the distribution to “private”).
If you’re following this as a tutorial, publish your resources so we can use them in the

next section.

5 Creating A Course: Maps and Sequences

In order to create a useful course, we need to arrange our raw materials so that students can
use them.

5.1 Creating Sequences

A Sequence is a series of resources that can be navigated using the NAV remote control
button, or by using the arrow keys on the remote control.

To create a Sequence resource, create a new resource as described in section 2.2. This is a
“sequence” resource so the URL must end in “.sequence”. After you enter in the URL ending
in “.sequence”, you should see a screen as in figure 13. You can use either the advanced
editor or the simplified editor.

5 CREATING A COURSE: MAPS AND SEQUENCES 39

Figure 14: Simple Map Editor

5.2 Creating a Simple .sequence With The Simple Editor

After creating a new .sequence resource and getting the editor selection prompt (as in the
“Simple Map Editor” figure), click the Simple Edit button to get to the simple map editor,
which appears in the figure.

The Simple Editor can create .sequences and .pages which are linear, which means they
have no branches or conditions.

On the right side of the simple editor is the Target, which represents the map you are
currently building. On the left side is the Import area, which represents a work area you
can use for your convenience to load and manipulate resources you may wish to include in
your map. Using the three buttons in the middle of the screen, you can cut things out of the
Target (top button), copy from the Target to the Import (middle button), and copy from
the Import to the Target (bottom button).

You can do a Group Search and a Group Import on both sides of the screen. A Group
Search allows you to run a search, then import selected results from that search either directly
into your Map or into your Import space. Checkboxes will appear next to the results in the
Group Search, and you can click the resources you wish to add to your map in the order that
you want them added. After you select the resources, you will be presented with a screen
that allows you to change their order. You will then be able to import the selected resources
and work with them.

A Group Import works in a similar fashion, but allows you to use the LON-CAPA network
browser to select your resources.

On the Import side, you can also browse for another Map, and load the resources used
in that map into your Import workspace. You can also discard the selected resources, clear
all the resources, and view the selected resources by using the buttons on the Import side of
the screen.

5 CREATING A COURSE: MAPS AND SEQUENCES 40

Figure 15: Initial Map Editor

Both list boxes support standard multi-select mechanisms as used in your OS.

5.3 Creating a Simple .sequence With The Advanced Editor

After creating a new .sequence resource and getting the editor selection prompt (13), click
the Advanced Edit button to get to the advanced map editor. You should see the initial
map editor as shown in the “Initial Map Editor” figure. Note there are two windows: One
is the workspace and one is a secondary window which will contain information as you add
resources.

Click the Start box. You’ll see what is shown in the “After clicking Start in the Map
Constructor” figure. Click Link Resource in the secondary window then click on the
Finish box. After that, click Straighten. You should see something looking like the
“Straightened Map” figure. This creates a simple map that flows from beginning to
end.

To insert a resource into the flow, click the black line with two arrows, seen between the
Start and Finish boxes in the “Straightened Map” figure. In the secondary window,
you will see something like the “Inserting a Resource” figure. Click Insert Resource
Into Link. A new resource box will appear in the link. Click the resource, which will
have the label Res.

3. Click Browse and the Network Directory Browser will appear, as shown in the
“Network Directory Browser” figure. Press the SELECT button that is next to the
resource you want to place in the chosen resource box. Once you’ve done that, if you
look back at the window that popped up when you clicked on New Resource, you’ll
see something like the “Resource Chosen” figure. You can type the URL and Title
into the secondary window if you prefer, following the format you see when you’ve
successfully browsed to a resource. After you click Save Changes, your changes will

5 CREATING A COURSE: MAPS AND SEQUENCES 41

1.

Figure 16: After clicking Start in the Map Constructor

Figure 17: Straightened Map

2.

Figure 18: Inserting a Resource

5 CREATING A COURSE: MAPS AND SEQUENCES 42

Figure 19: Network Directory Browser

Figure 20: Resource Chosen

5 CREATING A COURSE: MAPS AND SEQUENCES 43

Figure 21: Creating a New Course

be set and the icons for the resource will appear in the Res box, as shown in figure
20. Click Save Map in the bar above your map to save the map.

Clicking on the left icon for a resource will open a new browser window with an
informational page about that resource. Clicking on the right icon for a resource will
open a new browser window and take you to the rendering of that resource.

4. Repeat steps two and three for as many resources as you’d like to bind together into
one page. You can insert the new resources anywhere you’d like.

5. When you are done adding resources, click the Save Map link to save the map.

In addition to manually adding in resources, the Advanced Editor also has the ability to
import resources in the same way that the Simple Editor can: From a LON-CAPA network
browser window, from a Group Search, or from another Map.

The Advanced Editor has many more capabilities which you can explore.

5.4 Page Maps

Creating a Page map is the same as creating a Sequence map, except that when choosing
the name of the resource, the URL will end with “.page”. This way, all resources you add in
the map editor will appear on one page together. Pages are often used to connect problems
in a homework set.

5.5 Creating a Course: Top-level Sequence

In order to view sequences, they need to be part of a course.
Courses have a Top-level map which defines the whole course. This Top-Level map will

often contain maps corresponding to homework assignments, chapters, or units. To view

6 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 44

your maps, you will need to make them part of a course. Only Domain Coordinators can
make courses and set their Top-level maps, so work with your Domain Coordinator if you
need to view your maps.

6 Numerical Response And Formula Response Ques-

tions

Numerical Response problems are very powerful. In fact, they are so powerful it would
be impossible to fully explain what is possible in a simple document. This chapter will
focus on getting you started with Numerical Response problems and show you some of the
possibilities, with no prerequisite knowledge necessary. The more you learn, the more you
will find you can do.

If you like, you can follow this chapter as its own tutorial. Create a Numerical Response
problem using the instructions in section 2.2, ending your resource name with “.problem”,
and create a new Simple Numerical Response problem.

6.1 The Parts of a Numerical Response Problem

A Numerical Response problem has seven major parts by default:

1. The Script is the heart of advanced Numerical Response problems. It can be used to
decide some of the parameters of the problem, compute the answer to the problem,
and do just about anything else you can imagine. The Script language is Perl. You
do not need to know Perl to use the Script block because we will be stepping through
some advanced examples in this chapter, but knowing Perl can help.

2. Like other problem types, the Text Block is used to display the problem the student
will see. In addition, you can place variables in the Text Block based on computations
done in the Script.

3. The Answer is the answer the system is looking for. This can also use parameters
from the Script block, allowing the answer to be computed dynamically.

4. A tolerance parameter determines how closely the system will require the student’s
answer to be in order to count it correct.

For technical reasons, it is almost never a good idea to set this parameter to zero.
Computers can only approximate computations involving real numbers. For instance,
a computer’s [decimal] answer to the simple problem 1

3
is “0.33333333333333331”. It

should be an infinite series of 3’s, and there certainly shouldn’t be a “1” in the an-
swer, but no computer can represent an infinitely long, infinitely detailed real number.
Therefore, for any problem where the answer is not a small integer, you need to allow
a tolerance factor, or the students will find it nearly impossible to exactly match the
computers idea of the answer. You may find the default too large for some problems.

There are three kinds of tolerance. For some answer A and a tolerance T ,

(a) an Absolute tolerance will take anything in the range A ± T . So if A = 10
and T = 2, then anything between 8 and 12 is acceptable. Any number in the
tolerance field without a % symbol is an absolute tolerance.

6 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 45

Figure 22: Numerical Response editor

6 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 46

(b) a Relative tolerance will take anything in the rangeA±aT , where T is interpreted
as a percentage/100. Any number in the tolerance field followed by a % symbol
is a relative tolerance. For example, a = 10 and t = 10% will accept anything
between 9 and 11.

(c) a tolerance that is a calculated variable (identified by $ sign as the first character).
For example, if an answer is $X,and for a student possible values range from−$X1
to +$X1, you could choose T = $tolerance = $2X1/100; acceptable answers
would then be from $X − $tolerance to $X + $tolerance. (This is especially
useful when answers close to zero are possible for some students)

5. A significant figures specification tells the system how many significant figures there
are in the problem, as either a single number or a range of acceptable values, expressed
as min,max. The system will check to make sure that the student’s answer contains
this many significant digits, useful in many scientific calculations. For example, if
the problem has three significant digits, the significant digit specification is “3”, and
the answer is “1.3”, the system will require the students to type “1.30”, even though
numerically, “1.3” and “1.30” are the same. A significant figure specification of “3,4”
means both “1.30” and “1.300” are acceptable.

6. The Single Line Text Entry area, as in other problem types, allowyou to manipulate
the text entry area the student will see.

7. Finally, the Hint should contain text which will help the students when they answer
incorrectly.

6.2 Simple Numerical Response Answer

Along with showing the Numerical Response editor, figure 22 also shows the parameters for
one of the simplest possible types of numerical response. The Text Block has the problem’s
question, which is the static text “What is 2 + 2?” The Answer is “4”. The Hint has been
set to something appropriate for this problem. Everything else has the default values from
when the problem was created.

If you create a problem like this, hit Submit Changes, then hit View after the changes
have been submitted, you can try the problem out for yourself. Note the last box in the
HTML page has the answer LON-CAPA is looking for conveniently displayed for you, along
with the range the computer will accept and the number of significant digits the computer
requires when viewed by an Author.

As you’re playing with the problem, if you use up all your tries or get the answer correct
but wish to continue playing with the problem, use the Reset Submissions button to clear
your answer attempts.

6.3 Simple Script Usage

Totally static problems only scratch the surface of the Numerical Response capabilities. To
really explore the power of LON-CAPA, we need to start creating dynamic problems. But
before we can get to truly dynamic problems, we need to learn how to work with the Script
window.

6 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 47

A script consists of several statements, separated by semi-colons. A statement is
the smallest kind of instruction to the computer. Most problems will be built from several
statements.

A script can contain comments, which are not interpreted as statements by the com-
puter. Comments start with # and go to the end of that line. Thus, if a line starts with #,
the whole line is ignored. Comments can also begin in the middle of a line. It is a good idea
to comment more complicated scripts, as it can be very difficult to read a large script and
figure out what it does. It is a very good idea to adopt some sort of commenting standard,
especially if you are working in a group or you believe other people may use your problems
in the future.

• One of the simplest statements in LON-CAPA is a variable assignment. A variable
can hold any value in it. The variable name must start with a $. In the Script, you
need to assign to variables before you use them. Put this program into the Script field
of the Numerical Response:

$variable = 3;

This creates a variable named variable and assigns it the value of “3”. That’s one
statement.

Variable names are case sensitive, must start with a letter, and can only consist of letters,
numbers, and underscores. Variable names can be as long as you want.

There are many variable naming conventions, covering both how to name and how to
capitalize variables1. It is a good idea to adopt a standard. If you are working with a group,
you may wish to discuss it in your group and agree on a convention.

If you Submit Changes and View the problem, you will see nothing has changed. This
is because in order for a variable to be useful, it must be used. The variable can be used in
several places.

6.3.1 Variables in Scripts

Variables can be used later in the same script. For instance, we can add another line below
the $variable line as such:

$variable2 = $variable + 2;

Now there is a variable called $variable2 with the the number “5” as its value.
Variables can also be used in strings , which are a sequence of letters. The underlying

language of the script, Perl, has a very large number of ways of using variables in strings,
but the easiest and most common way is to use normal double-quotes and just spell out the
name of the variable you want to use in the string, like this:

$stringVar = ‘‘I have a variable with the value $variable.’’;

1The author favors capsOnNewWords. Some people use underscore to separate words. Many use up-

percase letters to specify constants like PI or GOLDEN MEAN. Some people always StartWithCapatalization.

What’s really important is to be consistent, so you don’t have to guess whether the variable you’re thinking

of is coefFriction, CoefFriction, COEF FRICTION, or something else.

6 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 48

Figure 23: Result of Variables in the Text Block

This will put the string “I have a variable with the value 3.” into the variable named
“stringVar”.

If you are following this chapter as a tutorial, add the previous two lines to your Script
and submit the changes for the problem. There’s no need to view it; there’s still no visible
change.

6.3.2 Variables in the Text Block

Once you’ve defined variables in the Script, you can use them in the Text Block. For
example, using the previous three-line script we’ve created so far, you can place the following
in the Text Block:

See the 3: $variable

See the string: $stringVar

If you save that and hit View, you should get what you see in figure 23. Note how the
“$variable” was turned into a 3, and the “$stringVar” was turned into “I have a variable
with the value 3.”

6.3.3 Variables in the Answer Block

You can use variables in the Answer part of the question. This means you can compute an
answer to a question. If you set the answer of the question to be $variable, Save Changes
and View it, you’ll see that LON-CAPA is now expecting “3.0” as the answer, plus or minus
5%.

6.4 Calling Functions

With variables, you can store strings or numbers. Functions allow you to manipulate these
strings or numbers. Functions work like mathematical functions: They take some number
of arguments in, and return one argument, usually a number or a string for our purposes.
There are a lot of functions available in LON-CAPA. You can see a complete list at ??.

For now, let’s just look at some simple examples.
In the Script block, function names start with &. Some example function calls are

shown in figure 24. You can see that functions can take either variables, numbers, or the
results of other function calls as parameters. The &sin function returns the sine of an angle
expressed in radians. &pow raises the first parameter to the power of the second parameter.
&abs returns the absolute value of the argument.

6 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 49

$a = -3.0;

$b = &sin($a);

$c = &pow(3.0, &abs($a));

Figure 24: Some Function Calls

Figure 25: Slope Problem Parameters

6.4.1 Numerical Response Randomization

If you’re doing this as a tutorial, try a few random seeds to see what happens.

6.5 Dynamic, Randomized Problems: Putting It All Together

Now you have all the tools to create those wonderful dynamic, randomized problems that
you’ve seen in LON-CAPA.

Try filling out your problem with the parameters shown in the “Slope Problem Parame-
ters” figure.

When creating randomized problems, you want to make sure that the problems always
have an answer. Consider what might happen if two slopes are chosen, both with the ex-
pression &random(-1.0,1.0,.2). One out of ten students would get a problem where both
slopes were equal, which has either no solution (for unequal y-intercepts) or an infinite num-
ber of solutions (for equal slopes and y-intercepts). Both of these cause a division-by-zero
error on the division that computes the answer. There are many ways to avoid this, one of
the easiest of which is picking one slope negative and one positive. This same problem can
show up in many other places as well, so be careful.

6.6 Units, Format

Numerical Response problems can require units. In the problem editing form, place the
desired unit in the Unit field. For information about what units the system accepts, see ??.

6 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 50

The computer will accept the answer in any of its accepted unit formats. For example, if
the answer to a problem is “1ft”, the computer will accept “12in” as correct.

You can format the number displayed by the computer as the answer. For instance, if
the answer is one-third, the computer will display that it computed “.333333333” as the
answer. If you’d like to shorten that, you can use the Format field. Format strings like
“2E” (without the quotes) will display three significant digits in scientific notation. Format
strings like “2f” will display two digits after the decimal point. Format strings like “2s” will
round a number to 2 significant digits.

6.7 For More Information

The full power of Perl is well outside the scope of this document. Looking in the function
list at 8.3 can give you some ideas. O’Reilly has some good Perl books. The Perl 5 Pocket
Reference will contain more than what you need to know to use LON-CAPA, available at
http://www.oreilly.com/catalog/perlpr3/ .

If you have any problems, consult http://help.loncapa.org/fom/cache/5.html . If you
don’t find the answer to your problem, please help us expand the FAQ by submitting a new
pending question.

Our advanced users often come to prefer the XML interface for the problems, available
through the EditXML buttons. Covering the XML format is beyond the scope of this
manual, but you can learn a lot by using the editor to make changes and seeing what
happens to the XML.

6.8 Formula Response

Formula Response problems have the same capabilities as Numerical Response problems,
and add the ability to ask the student for a symbolic formula as an answer, instead of a
simple number.

6.8.1 Sample Specifications

As you may know, it is extremely difficult to determine whether a given expression is exactly
equal to another expression in general. For example, is sin 2x = 2 sinx cos x? LON-CAPA
has two ways of finding out if it is:

• algebraically, using a symbolic algebra system

• numerically, using sampling points

You need to determine which way is the safest in a given situation.
If you don’t specify sampling points, the symbolic algebra system is used.
If you do specify sampling points, LON-CAPA uses them. If your answer and the stu-

dent’s answer agree at the sampling points within your given tolerance factor, the student’s
answer will be accepted. If the student’s answer does not agree at the sampling points within
your given tolerance factor, it will be rejected.

To specify where to sample the formulas for determining whether the student’s answer is
correct, you need to put a sampling specification in the Sample Points field. The sampling
specifications take the following format:

6 NUMERICAL RESPONSE AND FORMULA RESPONSE QUESTIONS 51

1. A comma-separated list of the variables you wish to interpret,

2. followed by “@” (not in quotes),

3. followed by any number of the following two things, separated by semi-colons:

(a) a comma-separated list of as many numbers as there are variables, which specifies
one sampling point, OR

(b) a comma-separated list of as many numbers as there are variables, followed by a
colon, followed by another list of as many numbers as there are variables, followed
by a #, followed by an integer.

The first form specifies one point to sample. The second form specifies a range for each
variable, and the system will take as many random samples from that range as the number
after the #.

For 2x2 + 4, with one variable “x”, one could specify:

• “x@2”, which will sample the answers only at 2. (This is generally a bad idea, as the
student could get lucky and match at that point)

• “x@1:5#4” will takes 4 samples from somewhere between 1 and 5.

• “x@1:5#4;10” will takes 4 samples from somewhere between 1 and 5, and also sample
at 10.

For 2x2 + 3y3 + z, which has three variables, one could specify:

• “x,y,z@4,5,3:10,12,8#4;0,0,0”, which take four samples from the box determined by
the points (4, 5, 3) and (10, 12, 8), and also sample the point (0, 0, 0).

6.8.2 Formula Notes

• The formula evaluator can not handle things of the form “x + - y”. If you have a
random variable that may be positive or negative (as in the example following this
section), you can try wrapping the references to that variable in parentheses. As
always, it is a good idea to try out several randomized versions of your problems to
make sure everything works correctly.

• Never use relative tolerance in Formula Response problems. Relative toler-
ance is poorly defined in Formula Response problems. Always use absolute tolerance.

6.8.3 Example Formula Response

A very simple formula response problem:

• In the Script, place the following:

$slope = &random(-5.0,5.0,.5);

$yint = &random(-5.0,5.0,.5);

$answer = ‘‘$slope*x + ($yint)’’;

7 TAGS USED IN XML AUTHORING 52

• In the Text Block, place the following: “For a line with slope $slope and y-intercept
$yint, what is y equal to?”

• In the Answer, place the following: $answer

• Set the Tolerance to .000001.

• Set the Sample Points to x@0;1;2;3 .

7 Tags Used in XML Authoring

It is assumed that the reader is already familiar with the basic terminology of XML. If not,
it is recommended that you read http://www.w3schools.com/xml/xml syntax.asp to acquire
a basic understanding of how to read and write XML.

LON-CAPA uses a very simple subset of XML and there is a lot you do not need to know,
including but not limited to: CDATA, DTDs, namespaces, and stylesheets. If you search for
XML resources on the Internet yourself, you do not need to read about those things to learn
how LON-CAPA uses XML for problems.

7.1 Response Tags

Response tags are the tags used by LON-CAPA to indicate what a student should enter into
the system, such as a string answer, clicking on a picture, typing in a formula, etc. They are
the core tags of homework problems; a homework problem without at least one response tag
is not really a homework problem.

Simple examples of the more complicated tags are available as templates for you to choose
from when creating a new problem in your Construction Space.

7.1.1 numericalresponse

stringresponse implements a string answer. An internal textline tag (see 7.5) is necessary
for the student’s response to go in. It can check the string for either case or order. Possible
attributes are:

• answer: required. Specifies the correct answer, either a perl list or scalar.

• type: optional. Specifies how the string is checked (like the CAPA styles). Possible
values are:

– cs: case sensitive, order important.

– ci: case insensitive, order important.

– mc: case insensitive, order unimportant. The mnemonic for this option is “multiple
choice”, which is how it was used in CAPA: To allow the user to specify choices
from a multiple choices problem, as in “adce”, meaning parts a, d, c, and e are
true. Order didn’t matter in such a problem. In LON-CAPA, using option-
response with True and False foils would be preferable, but this will remain
supported for easier CAPA to LON-CAPA conversion.

7 TAGS USED IN XML AUTHORING 53

7.1.2 imageresponse

imageresponse implements a image-click answer. imageresponse tags should contain a
foilgroup tag, which contain foil tags. Each foil tag can contain:

• image: required. The delimited text should correspond to a published image resource.
Example: . The follow-
ing image formats are recommended - gif, jpg or png. Other formats may work, but
there may be printing or display issues. The image should only appear once per foil.

• rectangle: required. The delimited text specifies a rectangular area that is correct,
specified as (x1,y1)-(x2,y2), where x1, x2, y1, and y2 are number corresponding to
the x and y coordinates of two corners that define a rectangle which specifies where
the right answer for this foil is located on the image. For example, (0,0)-(100,200)
will specify that a rectangle 100 pixels wide and 200 pixels tall, situated in the upper
left of the image, is correct. At least one rectangle is required; multiple rectangles may
be specified.

• text: required. The delimited text is printed before the image is shown on the screen.
This text is typically used to describe to the student what they are expected to click
on.

7.1.3 optionresponse

optionresponse implements a “select from these choices” style question. The choices are
specified by the instructor and use the foil structure tags as described in 7.3, with this
additional addition:

• foilgroup: required to have an options attribute which should be a perl list of possible
options for the student.

7.1.4 radiobuttonresponse

radiobuttonresponse implements a true/false question with one correct answer. It uses
the foil structure tags as described in 7.3, but the value of a foil can only be true, false, or
unused.

7.1.5 dataresponse

dataresponse is an advanced type of response tag that implements a simple data storage
and needs an input tag, such as textline, to work correctly. Possible attributes are:

• name: internal name for the value. It will have the part id and response id added to
it.

• type: type of data stored in this response field. It should be one of the types supported
by parameter.html

• display: string that will be used to describe the field when interfacing with humans.

7 TAGS USED IN XML AUTHORING 54

7.1.6 externalresponse

externalresponse is an advanced type of response tag that implements the ability to have
an external program grade a response. It expects either a textline or textfield inside the
tag. Possible attributes are:

• url: url to submit the answer form to. It does not need to be a LON-CAPA machine.

• answer: data to post in the form element LONCAPA correct answer to the remote
site.

• form: hash variable name that will be submitted to the remote site as a HTTP form.

The form sent will consist of

• LONCAPA student response full text of what the student entered in the entry
field

• LONCAPA correct answer contents of the answer attribute

• LONCAPA language specified language encoding of the requesting resource

• all items in the form attribute if any of these clash with the above, the above
values will overwite the value in the form attribute

The response of the remote server needs to be in XML as follows:

• loncapagrade: takes no attributes, but must surround the response.

• awarddetail: required. The delimited text inside must be one of the detailed results
that appears in the data storage documentation. CVS:loncapa/doc/homework/datastorage,
look for resource.partid.responseid.awarddetail.

• message: optional message to have shown to the student.

Example:

<loncapagrade>

<awarddetail>INCORRECT</awarddetail>

<message>

A message to be shown to the students

</message>

</loncapagrade>

7.1.7 Attributes For All Response Tags

These response tag attributes are used by all response tags:

• id: If this isn’t set, it will be set during the publication step. It is used to assign
parameter names in a way that can be tracked if an instructor modifies by hand.

• name: optional. If set, it will be used by the resource assembly tool when one is
modifying parameters.

7 TAGS USED IN XML AUTHORING 55

7.2 responseparam and parameter

If responseparam appears, it should be inside of a response tag. It defines an externally
adjustable parameter for the question, which the question can then use to allow other users
to customize the problem for their courses without changing the source code of the problem.
Possible attributes are:

• default: required. Specifies a default value for the parameter.

• name: required. Specifies an internal name for the parameter.

• type: required. Specifies the type of parameter: tolerance, int, float, string, or
date.

• description: string describing the parameter. This is what is used to talk about a
parameter outside of a problem.

parameter is exactly the same as responseparam, but should appear outside of a response
tag.

7.3 Foil Structure Tags

All tags that implement a foil structure have an optional arg of max that controls the
maximum number of total foils to show.

• foilgroup: required. Must surround all foil definitions.

• foil: required. The foil is defined by what is delimited by the foil tag.

• conceptgroup: optional. Surrounds a collection of foil. When a problem is displayed,
only one of the contained foil is selected for display. It has one required attribute
concept.

7.4 Hint Tags

All of these tags must appear inside a response tag:

• hintgroup: tag that surrounds all of a hint.

• hintpart: required. Tag to implement conditional hints. It has a required argument
on. When a hint tag named the same as the on attribute evaluates to be correct, the
hintpart will show. If no other hintpart is to show then all hintparts with an on
value set to “default” will show.

• numericalhint: It has all the arguments that numericalresponse does, and the
required attribute name which should be set to the value of which hintpart will be
shown.

• stringhint: It has all the arguments that stringresponse does, and the required
attribute name which should be set to the value of which hintpart will be shown.

7 TAGS USED IN XML AUTHORING 56

• formulahint: It has all the arguments that formularesponse does, and the required
attribute name which should be set to the value of which hintpart will be shown.

• optionhint: The required attribute name should be set to the value of which hint-
part will be shown.

• radiobuttonhint: The required attribute name should be set to the value of which
hintpart will be shown, and the attribute answer should be a two element list, first
the type (foil or concept) and then either the foil’s name or the concept’s string.

• customhint: The required attribute name should be set to the value of which hint-
part will be shown. Define the hint condition within an answer block inside of the
customhint block. The condition is defined like how an answer is defined in cus-
tomresponse where you need to return EXACT ANS to indicate when customhint
criteria are met.

7.5 Input Tags

This group of tags implements a mechanism for getting data for students. They will usually
be used by a response tag.

• textfield: Creates a large text input box. If data appears between the start and end
tags, the data will appear in the textfield if the student has not yet made a submission.
Additionally, it takes two attributes: rows and cols, which control the height and
width of the text area respectively. It defaults to 10 rows and 80 columns.

• textline: Creates a single line input element. It accepts one attribute size which
controls the width of the textline, defaulting to 20.

7.6 Output Tags

This group of tags generates useful output.

• algebra: Typesets algebraic expressions

<algebra>2x^y+sqrt(3/x^2)</algebra>

Expressions are displayed using the math expression display mechanism defined in the
user’s preferences. The default is tth. See the section below concerning the <m> tag
for more information on that as well as on the attribute display.

• chem: Typesets chemical equation

<chem>O2 + 2H2 -> 2H2O</chem>

• num: Typesets a number formatted in scientific notation, fixed point, fixed point with
commas, fixed point with commas and dollar sign, or in significant digits.

7 TAGS USED IN XML AUTHORING 57

<num format="2E">31454678</num>

<num format="2f">31454678</num>

<num format="2f">31454678</num>

<num format=",2f">31454678</num>

<num format="$2f">31454678</num>

<num format="2s">31454678</num>

• parse: to display the parsed view of a variable’s contents

<script type="loncapa/perl">

$table=’<table>’;

for ($i=1;$i<=10;$i++) {

$table.=’<tr><td>’.$i.’</td><td>’.&random(1,10,1).’</td></tr>’;

}

$table.=’</table>’;

</script>

<parse>$table</parse>

• standalone: Everything in between the start and end tag is shown only on the web
and only if the resource is not part of a course.

• displayduedate: This will insert the current due date if one is set in the document.
It is generated to be inside a table of 1x1 elements. The displayduedate tag accepts
The following attributes:

style=“plain” Makes the due date appear without any boxing. If the parameter value
is other than “plain”, or if the style parameter is omitted, the due date will be
displayed within a box.

format=“fmt string” Allows you to control the format of the due date. “fmt string”
is an arbitrary string that can contain any of the following formatting items:

%a Replaced by the abbreviated weekday name according to the current locale.

%A Replaced by the full weekday name according to the current locale.

%b The abbreviated month name according to the current locale.

%B The full month name according to the current locale.

%c The preferred date and time representation for the current locale (the default
format string is just this).

%C The century number as a two digit integer

%d The day of the month as a decimal number. Leading zeroes are shown for
single digit day numbers.

%D Equivalent to %m/%d/%y

%e Like %d but a leadnig zero is replaced by a space.

%F Equivalent to %Y-%m-%d

%G The four digit year number.

%g The two digit year numbger.

%H The hour as a two digit number in the range 00 thorugh 23.

7 TAGS USED IN XML AUTHORING 58

%I The hour as a two digit number in the range 00 through 12.

%j The day your the year in the range 001 through 366.

%k The hour (24 hour clock), single digits are preceded by a blank.

%l Like %k but using a 12 hour clock.

%m The month as a two digit decimal number in the range 01 through 12.

%M The minute as a two digit decimal number in the range 00 through 59.

%n A newline character.

%p AM or PM depending on the time value.

%P am or pm.

%r The time in am or pm notation.

%R Time in 24 hour notatinon (%H:%M). See also %T below.

%s Number of seconds since midnight of January 1, 1970.

%S The second as a decimal number int the range 00 through 59.

%t A horizontal tab character.

%T The time in 24 hour notation (%H:%M:%S).

%u Day of the week as a decimal number with Monday as 1.

%U The week number of the current year in the range 00 through 53. Week 1 is
the week containing the first Sunday of the year.

%V Same as %U but week 1 is the first week with at least 4 days, with Monday
being the first day of a week.

%w Day of the week as a decimal integer in the range 0 through 7, Sunday is 0.

%W Week number of the current year in the range 00 through 53, where the
first Monday of the year is the first day of week 01.

%x The preferred date notation in the current locale without the time.

%X The preferred time notation in the current locale without the date.

%y The year as a decimal number without the century (range 00 through 99).

%Y The year as a decimal number including the century.

%% A % character.

%+ Date and time in the form returned by the Unix date command.

• displaytitle: This will insert the title of the problem from the metadata of the prob-
lem. Only the first displaytitle in a problem will show the title; this allows clean
usage of displaytitle in LON-CAPA style files.

• window: This creates a link that when clicked shows the intervening information in
a pop-up window. By default the window will be 500 pixels wide and 200 pixels tall,
and the link text will be a superscript * (so as to look like a footnote). These can be
changed using the attributes

– width controls the starting width of the popup window

– height controls the starting height of the popup window

– linktext the text that should appear as the link that causes the creation of the
window

7 TAGS USED IN XML AUTHORING 59

When printing, this included text will get turned into a real footnote.

• m: The inside text is LATEX, and is converted to HTML (or MathML) on the fly. The
default is to convert to the display mechanism that the user has selected in preferences.
This can be overriden by setting the attribute display to one of “tth” or “jsMath” or
“mimetex”which will force a specfic display mechanism. Note, however, that setting
the attribute diplay to jsmath is generally discouraged as it requires users to have
installed jsmath software on their computer.

If you want variables inside of this tag to be evaluated before the tex gets converted,
then use eval=“on” . For example, <m eval=“on”>\[$eqn\]</m>, will evaluate the
variable $eqn first and then run it through the TTH converter. Anytime you use a
variable inside of the m tag, you will want to set eval to on.

For example, put the following in a script in the resource:

$eqn = "$a+$b";

$eqn = s/\+-/-/g;
and in a text area, you can type:

<m eval=‘‘on’’>$eqn</m>

You will get the equation rendered with no +-, no matter what value $b may take on.

• randomlabel: This shows a specified image with images or text labels randomly
assigned to a set of specific locations. Those locations may also have values assigned
to them. A hash is generated that contains the mapping of labels to locations, labels
to values, and locations to values. Example:

<randomlabel bgimg="URL" width="12" height="45" texwidth="50">

<labelgroup name="GroupOne" type="image">

<location x="123" y="456" value="10" />

<location x="321" y="654" value="20" />

<location x="213" y="546" value="13" />

<label description="TEXT-1">IMG-URL</label>

<label description="TEXT-2">IMG-URL</label>

<label description="TEXT-3">IMG-URL</label>

</labelgroup>

<labelgroup name="GroupTwo" type="text">

<location x="12" y="45" />

<location x="32" y="65" />

<location x="21" y="54" />

<label>TEXT-1</label>

<label>TEXT-2</label>

<label>TEXT-3</label>

</labelgroup>

</randomlabel>

Possible attributes are:

7 TAGS USED IN XML AUTHORING 60

– bgimg: Either a fully qualified URL for an external image or a LON-CAPA
resource. It supports relative references (../images/apicture.gif). The image must
either be a GIF or JPEG.

– width: The width of the image in pixels.

– height: The height of the image in pixels.

– texwidth: The width of the image in millimeters.

• problemtype: This tag allows you to show or hide output based on what the problem-
type parameter is set to in the course. For example:

<problemtype mode="show" for="exam,survey">

<startouttext />

The formula for the circumference of a circle is 2*pi*r

<endouttext />

</problemtype>

Will only show the output text when the problem is set to the type of exam or survey
in the course. The attribute for mode can be set to show or hide. The attribute for
for can be problem, exam, survey, or practice.

7.7 Internal Tags

• labelgroup: One is required, but multiple are allowed. This declares a group of
locations and labels associated with them. Possible attributes are:

– name: This is the name of the group. A hash with this name will be gener-
ated holding the mappings for later use in the problem. For each location a
value will be set for which label is there (EX. $hash{’1’}=”TEXT-2”). For lo-
cations with values, the hash will contain 2 items, a location to value mapping
($hash{’value 1’}=10), and a label to value mapping ($hash{’labelvalue 2’}=10).
For all image style of labels there will also be a label description to label URL
mapping ($hash{’image 2’}=IMG-URL). The entry numlocations will also be
set to the total number of locations that exist (Note: locations and labels start
counting from one.)

– type: the type of labels in this group, either ’image’ or ’text’

– location: declares a location on the image that a label should appear at. Possible
attributes are:

∗ x: The x value of the location in pixels.

∗ y: The y value of the location in pixels.

∗ value: An optional scalar value to associate at this location.

∗ label: Declaration of a label. If this is a text type label, the internal text
should be the text of the label (HTML is not currently supported); if this
is an image type of label, the internal text must be a LON-CAPA resource
specification, and the description filed must be set. Possible attributes are:

· description: Required field for image labels. It will be used when setting
values in the hash.

7 TAGS USED IN XML AUTHORING 61

7.8 Scripting Tags

• display: The intervening Perl script is evaluated in the safe space and the return value
of the script replaces the entire tag.

• import: This causes the parse to read in the file named in the body of the tag and
parse it as if the entire text of the file had existed at the location of the tag.

• parserlib: The enclosed filename contains definitions for new tags.

• script: If the attribute type is set to “loncapa/perl” the enclosed data is a Perl script
which is evaluated inside the Perl safe space. The return value of the script is ignored.

• scriptlib: The enclosed filename contains Perl code to run in the safe space.

• block: This has a required argument condition that is evaluated. If the condition is
true, everything inside the tag is evaluated; otherwise, everything inside the block tag
is skipped.

• notsolved: Everything inside the tag is skipped if the problem is “solved”.

• postanswerdate: Everything inside the tag is skipped if the problem is before the
answer date.

• preduedate: Everything inside the tag is skipped if the problem is after the due date.

• randomlist: The enclosed tags are parsed in a stable random order. The optional
attribute show restricts the number of tags inside that are actually parsed to no more
than show.

• solved: Everything inside the tag is skipped if the problem is “not solved”.

• while: This implements a while loop. The required attribute condition is a Perl
scriptlet that when evaluated results in a true or false value. If true, the entirety of
the text between the whiles is parsed. The condition is tested again, etc. If false, it
goes to the next tag.

7.9 Structure Tags

These tags give the problem a structure and take care of the recording of data and giving
the student messages.

• problem: This must be the first tag in the file. This tag sets up the header of the
webpage and generates the submit buttons. It also handles due dates properly.

• part: This must be below problem if it is going to be used. It does many of the same
tasks as problem, but allows multiple separate problems to exist in a single file.

• startouttext and endouttext: These tags are somewhat special. They must have
no internal text and occur in pairs. Their use is to mark up the problem so the web
editor knows what sections should be edited in a plain text block on the web.

8 <SCRIPT> TAG 62

• comment: This tag allows one to comment out sections of code in a balanced manner,
or to provide a comment description of how a problem works. It only shows up for the
edit target, stripped out for all other targets.

8 <script> Tag

8.1 Supported script functions

This is a list of functions that have been written that are available in the Safe space scripting
environment inside a problem:

• sin(x), cos(x), tan(x)

• asin(x), acos(x), atan(x), atan2(y,x)

• log(x), log10(x)

• exp(), pow(x,y), sqrt(x)

• abs(x), sgn(x)

• erf(x), erfc(x)

• ceil(x), floor(x)

• min(...), max(...)

• factorial(n)

• N%M (modulo function)

• sinh(x), cosh(x), tanh(x)

• asinh(x), acosh(x), atanh(x)

• roundto(x,n)

• cas(s,e,l)

• web(“a”,”b”,”c”) or web(a,b,c)

• html(“a”) or html(a)

• j0(x), j1(x), jn(n,x), jv(y,x)

• y0(x), y1(x), yn(n,x), yv(y,x)

• random

• choose

• tex(“a”,”b”) or tex(a,b)

• var in tex(a)

8 <SCRIPT> TAG 63

• to string(x), to string(x,y)

• class(), sec()

• name(), firstname(), lastname(), student number()

• check status(partid)

• open date(partid), due date(partid), answer date(partid)

• open date epoch(partid), due date epoch(partid), answer date epoch(partid)

• submission(partid,responseid,version)

• currentpart()

• sub string()

• array moments(array)

• format(x,y),prettyprint(x,y,target),dollarformat(x,target)

• languages

• map(...)

• caparesponse check

• caparesponse check list

We also support these functions from Math::Cephes

bdtr: Binomial distribution

bdtrc: Complemented binomial distribution

bdtri: Inverse binomial distribution

btdtr: Beta distribution

chdtr: Chi-square distribution

chdtrc: Complemented Chi-square distribution

chdtri: Inverse of complemented Chi-square distribution

fdtr: F distribution

fdtrc: Complemented F distribution

fdtri: Inverse of complemented F distribution

gdtr: Gamma distribution function

gdtrc: Complemented gamma distribution function

nbdtr: Negative binomial distribution

nbdtrc: Complemented negative binomial distribution

nbdtri: Functional inverse of negative binomial distribution

ndtr: Normal distribution function

ndtri: Inverse of Normal distribution function

pdtr: Poisson distribution

pdtrc: Complemented poisson distribution

8 <SCRIPT> TAG 64

pdtri: Inverse Poisson distribution

stdtr: Student’s t distribution

stdtri: Functional inverse of Student’s t distribution

Please see Math::Cephes for more information

8.2 Script Variables

• $external::target - set to the current target the xml parser is parsing for

• $external::part - set to the id of the current problem <part>; zero if there are no
<part>

• $external::gradestatus - set to the value of the current resource.partid.solved value

• $external::datestatus - set to the current status of the clock either CLOSED, CAN ANSWER,
CANNOT ANSWER, SHOW ANSWER, or UNCHECKEDOUT

• $external::randomseed - set to the number that was used to seed the random number
generator

• $pi - set to PI

• $rad2deg - converts radians to degrees

• $deg2rad - converts degrees to radians

8.3 Table: LON-CAPA functions

LON-CAPA Function Description
&sin($x), &cos($x), &tan($x) Trigonometric functions where x is in radians.

$x can be a pure number, i.e., you can call
&sin(3.1415)

&asin($x), &acos($x), &atan($x),
&atan2($y,$x)

Inverse trigonometric functions. Return value
is in radians. For asin and acos the value of x
must be between -1 and 1. The atan2 returns
a value between -pi and pi the sign of which is
determined by y. $x and $y can be pure num-
bers

&log($x), &log10($x) Natural and base-10 logarithm. $x can be a
pure number

&exp($x), &pow($x,$y), &sqrt($x) Exponential, power and square root, i.e.,ex, xy
and /x. $x and $y can be pure numbers

&abs($x), &sgn($x) Abs takes the absolute value of x while sgn(x)
returns 1, 0 or -1 depending on the value of x.
For x>0, sgn(x) = 1, for x=0, sgn(x) = 0 and
for x<0, sgn(x) = -1. $x can be a pure number

8 <SCRIPT> TAG 65

LON-CAPA Function Description
&erf($x), &erfc($x) Error function. erf = 2/sqrt(pi) integral (0,x)

et-sq and erfx(x) = 1.0 - erf(x). $x can be a
pure number

&ceil($x), &floor($x) Ceil function returns an integer rounded up
whereas floor function returns and integer
rounded down. If x is an integer than it re-
turns the value of the integer. $x can be a pure
number

&min(...), &max(...) Returns the minimum/ maximum value of a
list of arguments if the arguments are numbers.
If the arguments are strings then it returns a
string sorted according to the ASCII codes

&factorial($n) Argument (n) must be an integer else it will
round down. The largest value for n is 170. $n
can be a pure number

$N%$M N and M are integers and returns the remainder
(in integer) of N/M. $N and $M can be pure
numbers

&sinh($x), &cosh($x), &tanh($x) Hyperbolic functions. $x can be a pure number
&asinh($x), &acosh($x), &atanh($x) Inverse hyperbolic functions. $x can be a pure

number
&format($x,’nn’) Display or format $x as nn where nn is nF or

nE or nS and n is an integer.
&prettyprint($x,’nn’,’optional target’) Note that that tag <num> can be used to do

the same thing. Display or format $x as nn
where nn is nF or nE or nS and n is an integer.
Also supports the first character being a $, it
then will format the result with a a call to &dol-
larformat() described below. If the first charac-
ter is a , it will format it with commas grouping
the thousands. In S mode it will fromat the
number to the specified number of significant
figures and display it in F mode. In E mode it
will attempt to generate a pretty x10ˆ3 rather
than a E3 following the number, the ’optional
target’ argument is optional but can be used to
force &prettyprint to generate either ’tex’ out-
put, or ’web’ output, most people do not need
to specify this argument and can leave it blank.

&dollarformat($x,’optional target’) Reformats $x to have a $ (or \$ if in tex mode)
and to have , grouping thousands. The ’optional
target’ argument is optional but can be used to
force &prettyprint to generate either ’tex’ out-
put, or ’web’ output, most people do not need
to specify this argument and can leave it blank.

8 <SCRIPT> TAG 66

LON-CAPA Function Description
Option 1 - $best = &languages()
Option 2 - @all = &languages()
Option 3 - $best =
&languages(\@desired languages)
Option 4 - @all =
&languages(\@desired languages)

Returns the best language to use, in the first
two options returns the languages codes in the
preference order of the user. In the second two
examples returns the best matches from a list
of desired language possibilities.

&roundto($x,$n) Rounds a real number to n decimal points. $x
and $n can be pure numbers

&cas($s,$e,$l) Evaluates the expression $e inside the symbolic
algebra system $s. Currently, only the Maxima
symbolic math system is implemented. $l is an
optional comma-separated list of libraries. Ex-
ample: &cas(’maxima’,’6*7’)

&implicit multiplication($f) Adds mathematical multiplication operators
to the formula expression $f where only
implicit multiplication is used. Exam-
ple: &implicit multiplication(’2(b+3c)’) re-
turns 2*(b+3*c)

&web(“a”,”b”,”c”) or &web($a,$b,$c) Returns either a, b or c depending on the output
medium. a is for plain ASCII, b for tex output
and c for html output

&html(“a”) or &html($a) Output only if the output mode chosen is in
html format

&j0($x), &j1($x), &jn($m,$x), &jv($y,$x) Bessel functions of the first kind with orders 0,
1 and m respectively. For jn(m,x), m must be
an integer whereas for jv(y,x), y is real. $x can
be a pure number. $m must be an integer and
can be a pure integer number. $y can be a pure
real number

&y0($x), &y1($x), &yn($m,$x), &yv($y,$x) Bessel functions of the second kind with orders
0, 1 and m respectively. For yn(m,x), m must
be an integer whereas for yv(y,x), y is real. $x
can be a pure number. $m must be an integer
and can be a pure integer number. $y can be a
pure real number

&random($l,$u,$d) Returns a uniformly distributed random num-
ber between the lower bound, l and upper
bound, u in steps of d. $l, $u and $d can be
pure numbers

&choose($i,...) Choose the ith item from the argument list. i
must be an integer greater than 0 and the value
of i should not exceed the number of items. $i
can be a pure integer

8 <SCRIPT> TAG 67

LON-CAPA Function Description
Option 1 -
&map($seed,[\$w,\$x,\$y,\$z],[$a,$b,$c,$d])
or
Option 2 -
&map($seed,\@mappedArray,[$a,$b,$c,$d])
Option 3 - @mappedArray =
&map($seed,[$a,$b,$c,$d])
Option 4 - ($w,$x,$y,$z) =
&map($seed,\@a)
Option 5 - @Z = &map($seed,\@a)
where $a=’A’
$b=’B’
$c=’B’
$d=’B’
$w, $x, $y, and $z are variables

Assigns to the variables $w, $x, $y and $z the
values of the $a, $b, $c and $c (A, B, C and
D). The precise value for $w .. depends on the
seed. (Option 1 of calling map). In option 2,
the values of $a, $b .. are mapped into the ar-
ray, @mappedArray. The two options illustrate
the different grouping. Options 3 and 4 give a
consistent way (with other functions) of map-
ping the items. For each option, the group can
be passed as an array, for example, [$a,$b,$c,$d]
=> \@a. And Option 5 is the same as option 4,
where the array of results is saved into a single
array rather than an array of scalar variables.

Option 1 -
&rmap($seed,[\$w,\$x,\$y,\$z],[$a,$b,$c,$d])
or
Option 2 -
&rmap($seed,\@rmappedArray,[$a,$b,$c,$d])
Option 3 - @rmapped array =
&rmap($seed,[$a,$b,$c,$d])
Option 4 - ($w,$x,$y,$z) =
&rmap($seed,\@a)
Option 5 - @Z = &map($seed,\@a)
where $a=’A’
$b=’B’
$c=’B’
$d=’B’
$w, $x, $y, and $z are variables

The rmap functions does the reverse action of
map if the same seed is used in calling map and
rmap.

$a=&xmlparse($string) You probably should use the tag <parse> in-
stead of this function. Runs the internal parser
over the argument parsing for display. Warn-
ing This will result in different strings in differ-
ent targets. Don’t use the results of this func-
tion as an answer.

&tex($a,$b), &tex(“a”,”b”) Returns a if the output mode is in tex otherwise
returns b

&var in tex($a) Equivalent to tex(“a”,”“)

8 <SCRIPT> TAG 68

LON-CAPA Function Description
&to string($x), &to string($x,$y) If x is an integer, returns a string. If

x is real than the output is a string with
format given by y. For example, if x =
12.3456, &to string(x,”.3F”) = 12.345 and
&to string(x,”.3E”) = 1.234E+01.

&class(), &sec() Returns null string, class descriptive name, sec-
tion number, set number and null string.

&name(), &student number(), &firstname(),
&lastname()

Return the full name in the following format:
lastname, firstname initial. Student number re-
turns the student 9-alphanumeric string. The
functions firstname and lastname return just
that part of the name. If undefined, the func-
tions return null.

&check status($partid) Returns a number identifying the current sta-
tus of a part. True values mean that a part
is “done” (either unanswerable because of tries
exhaustion, or correct) or a false value if a part
can still be attempted. If $part is unspecified,
it will check either the current <part>’s status
or if outside of a <part>, check the status of
previous <part>. The full set of return codes
are: ’undef’ means it is unattempted, 0 means
it is attempted and wrong but still has tries, 1
means it is marked correct, 2 means they have
exceed maximum number of tries, 3 means it
after the answer date.

&open date($partid), &due date($partid),
&answer date($partid)

Problem open date, due date and answer date in
local human-readable format. Part 0 is chosen
if $partid is omitted.

&open date epoch($partid),
&due date epoch(($partid), &an-
swer date epoch(($partid)

Problem open date, due date and answer date
in seconds after the epoch (UTC), which can be
used in calculations.

&submission($partid,$responseid,$version) Returns what the student submitted for re-
sponse $responseid in part $partid. You can get
these IDs from the XML-code of the problem.
$version is optional and returns the $version-th
submission of the student that was graded.

¤tpart() Returns the ID of the current part.
Not implemented Get and set the random seed.
&sub string($a,$b,$c) perl substr function.
However, note the differences

Retrieve a portion of string a starting from b
and length c. For example, $a = “Welcome
to LON-CAPA”; $result=&sub string($a,4,4);
then $result is “come”

8 <SCRIPT> TAG 69

LON-CAPA Function Description
@arrayname Array is intrinsic in perl. To access
a specific element use $arrayname[$n] where $n
is the $n+1 element since the array count starts
from 0

“xx” can be a variable or a calculation.

@B=&array moments(@A) Evaluates the moments of an array A and place
the result in array B[i] where i = 0 to 4. The
contents of B are as follows: B[0] = number of
elements, B[1] = mean, B[2] = variance, B[3] =
skewness and B[4] = kurtosis.

&min(@Name), &max(@Name) In LON-CAPA to find the maximum value
of an array, use &max(@arrayname) and to
find the minimum value of an array, use
&min(@arrayname)

undef @name To destroy the contents of an array, use
@return array=&random normal
($item cnt,$seed,$av,$std dev)

Generate $item cnt deviates of normal distri-
bution of average $av and standard deviation
$std dev. The distribution is generated from
seed $seed

@return array=&random beta
($item cnt,$seed,$aa,$bb) NOTE: Both $aa
and $bb MUST be greater than 1.0E-37.

Generate $item cnt deviates of beta distribu-
tion. The density of beta is: Xˆ($aa-1) *(1-
X)ˆ($bb-1) /B($aa,$bb) for 0<X<1.

@return array=&random gamma
($item cnt,$seed,$a,$r) NOTE: Both $a
and $r MUST be positive.

Generate $item cnt deviates of gamma dis-
tribution. The density of gamma is:
($a**$r)/gamma($r) * X**($r-1) * exp(-$a*X).

@return array=&random exponential
($item cnt,$seed,$av) NOTE: $av MUST
be non-negative.

Generate $item cnt deviates of exponential dis-
tribution.

@return array=&random poisson
($item cnt,$seed,$mu) NOTE: $mu MUST
be non-negative.

Generate $item cnt deviates of poisson distri-
bution.

@return array=&random chi
($item cnt,$seed,$df) NOTE: $df MUST
be positive.

Generate $item cnt deviates of chi square dis-
tribution with $df degrees of freedom.

@return array=&random noncentral chi
($item cnt,$seed,$df,$nonc) NOTE: $df MUST
be at least 1 and $nonc MUST be non-negative.

Generate $item cnt deviates of noncen-
tral chi square distribution with $df degrees of
freedom and noncentrality parameter $nonc.

@return array=&random f
($item cnt,$seed,$dfn,$dfd) NOTE: Both
$dfn and $dfd MUST be positive.

Generate $item cnt deviates of F (variance ra-
tio) distribution with degrees of freedom $dfn
(numerator) and $dfd (denominator).

@return array=&random noncentral f
($item cnt,$seed,$dfn,$dfd,$nonc) NOTE:
$dfn must be at least 1, $dfd MUST be
positive, and $nonc must be non-negative.

Generate $item cnt deviates of noncentral F
(variance ratio) distribution with degrees of
freedom $dfn (numerator) and $dfd (denomi-
nator). $nonc is the noncentrality parameter.

8 <SCRIPT> TAG 70

LON-CAPA Function Description
@return array=&random multivariate normal
($item cnt,$seed,\@mean,\@covar) NOTE:
@mean should be of length p array of real
numbers. @covar should be a length p array of
references to length p arrays of real numbers
(i.e. a p by p matrix.

Generate $item cnt deviates of multivari-
ate normal distribution with mean vector
@mean and variance-covariance matrix.

@return array=&random multinomial
($item cnt,$seed,@p) NOTE: $item cnt is
rounded with int() and the result must be
non-negative. The number of elements in @p
must be at least 2.

Returns single observation from multinomial
distribution with $item cnt events classified into
as many categories as the length of @p. The
probability of an event being classified into cat-
egory i is given by ith element of @p. The ob-
servation is an array with length equal to @p,
so when called in a scalar context it returns the
length of @p. The sum of the elements of the
obervation is equal to $item cnt.

@return array=&random permutation
($seed,@array)

Returns @array randomly permuted.

@return array=&random uniform
($item cnt,$seed,$low,$high) NOTE: $low
must be less than or equal to $high.

Generate $item cnt deviates from a uniform dis-
tribution.

@return array=&random uniform integer
($item cnt,$seed,$low,$high) NOTE: $low and
$high are both passed through int(). $low must
be less than or equal to $high.

Generate $item cnt deviates from a uniform dis-
tribution in integers.

@return array=&random binomial
($item cnt,$seed,$nt,$p) NOTE: $nt is rounded
using int() and the result must be non-negative.
$p must be between 0 and 1 inclusive.

Generate $item cnt deviates from the binomial
distribution with $nt trials and the probabilty
of an event in each trial is $p.

@return array=&random negative binomial
($item cnt,$seed,$ne,$p) NOTE: $ne is rounded
using int() and the result must be positive. $p
must be between 0 and 1 exclusive.

Generate an array of $item cnt outcomes gen-
erated from negative binomial distribution with
$ne events and the probabilty of an event in
each trial is $p.

8.4 Table: CAPA vs. LON-CAPA function differences

CAPA Functions LON-CAPA Differences (if any)
sin(x), cos(x), tan(x) &sin($x), &cos($x), &tan($x)
asin(x), acos(x), atan(x),
atan2(y,x)

&asin($x), &acos($x), &atan($x),
&atan2($y,$x)

log(x), log10(x) &log($x), &log10($x)
exp(x), pow(x,y), sqrt(x) &exp($x), &pow($x,$y), &sqrt($x)
abs(x), sgn(x) &abs($x), &sgn($x)
erf(x), erfc(x) &erf($x), &erfc($x)
ceil(x), floor(x) &ceil($x), &floor($x)
min(...), max(...) &min(...), &max(...)
factorial(n) &factorial($n)

8 <SCRIPT> TAG 71

CAPA Functions LON-CAPA Differences (if any)
N%M $N%$M
sinh(x), cosh(x), tanh(x) &sinh($x), &cosh($x), &tanh($x)
asinh(x), acosh(x),
atanh(x)

&asinh($x), &acosh($x),
&atanh($x)

/DIS($x,”nn”) &format($x,’nn’) The difference is obvious.
Not in CAPA &prettyprint($x,’nn’,’optional

target’)
Not in CAPA &dollarformat($x,’optional target’)
Not in CAPA &languages(@desired languages)
roundto(x,n) &roundto($x,$n)
Not in CAPA &cas($s,$e)
Not in CAPA &implicit multiplication($f)
web(“a”,”b”,”c”) or
web(a,b,c)

&web(“a”,”b”,”c”) or
&web($a,$b,$c)

html(“a”) or html(a) &html(“a”) or &html($a)
jn(m,x) &j0($x), &j1($x), &jn($m,$x),

&jv($y,$x)
In CAPA, j0, j1 and jn are con-
tained in one function, jn(m,x)
where m takes the value of 0,
1 or 2. jv(y,x) is new to LON-
CAPA.

yn(m,x) &y0($x), &y1($x), &yn($m,$x),
&yv($y,$x)

In CAPA, y0, y1 and yn
are contained in one function,
yn(m,x) where m takes the
value of 0, 1 or 2. yv(y,x) is
new to LON-CAPA.

random(l,u,d) &random($l,$u,$d) In CAPA, all the 3 arguments
must be of the same type.
However, now you can mix the
type

choose(i,...) &choose($i,...)

/MAP(seed;w,x,y,z;a,b,c,d)

Option 1 -
&map($seed,[\$w,\$x,\$y,\$z],[$a,$b,$c,$d])
or
Option 2 -
&map($seed,\@mappedArray,[$a,$b,$c,$d])
Option 3 - @mappedArray =
&map($seed,[$a,$b,$c,$d])
Option 4 - ($w,$x,$y,$z) =
&map($seed,\@a)
where $a=’A’
$b=’B’
$c=’B’
$d=’B’
$w, $x, $y, and $z are variables

In CAPA, the arguments are
divided into three groups sep-
arated by a semicolon ;. In
LON-CAPA, the separation is
done by using [] brackets or
using an array @a. Note the
backslash (\) before the argu-
ments in the second and third
groups.

8 <SCRIPT> TAG 72

CAPA Functions LON-CAPA Differences (if any)

rmap(seed;a,b,c,d;w,x,y,z)

Option 1 -
&rmap($seed,[\$w,\$x,\$y,\$z],[$a,$b,$c,$d])
or
Option 2 -
&rmap($seed,\@rmappedArray,[$a,$b,$c,$d])
Option 3 - @rmapped array =
&rmap($seed,[$a,$b,$c,$d])
Option 4 - ($w,$x,$y,$z) =
&rmap($seed,\@a)
where $a=’A’
$b=’B’
$c=’B’
$d=’B’
$w, $x, $y, and $z are variables

In CAPA, the arguments are
divided into three groups sep-
arated by a semicolon ;. In
LON-CAPA, the separation is
done by using [] brackets (with
create an unamed vector ref-
erence) or using an array @a.
Note the backslash (\) before
the arguments in the second
and third groups (Which cause
Perl to send to variable loca-
tions rather than the variable
values, similar to a C pointer).

NOT IMPLEMENTED IN
CAPA

$a=&xmlparse($string) New to LON-CAPA

tex(a,b), tex(“a”,”b”) &tex($a,$b), &tex(“a”,”b”)
var in tex(a) &var in tex($a)
to string(x), to string(x,y) &to string($x), &to string($x,$y)
capa id(), class(), section(),
set(), problem()

&class(), §ion() capa id(), set() and problem()
are no longer used. Currently,
they return a null value.

name(), student number() &name(), &student number()
open date(), due date(),
answer date()

&open date(), &due date(), &an-
swer date()

Output format for time is
changed slightly. If pass noon,
it displays ..pm else it displays
..am. So 23:59 is displayed as
11:59 pm.

get seed(), set seed() Not implemented
sub string(a,b,c) &sub string($a,$b,$c) perl substr

function. However, note the differ-
ences

Perl intrinsic function, sub-
str(string,b,c) starts counting
from 0 (as opposed to 1). In
the example to the left, sub-
str($a,4,4) returns “ome “.

array[xx] @arrayname Array is intrinsic in
perl. To access a specific element
use $arrayname[$n] where $n is the
$n+1 element since the array count
starts from 0

In LON-CAPA, an array is de-
fined by @arrayname. It is not
necessary to specify the dimen-
sion of the array.

8 <SCRIPT> TAG 73

CAPA Functions LON-CAPA Differences (if any)
array moments(B,A) @B=&array moments(@A) In CAPA, the moments are

passed as an array in the first
argument whereas in LON-
CAPA, the array containing
the moments are set equal to
the function.

array max(Name), ar-
ray min(Name)

&min(@Name), &max(@Name) Combined with the min and
max functions defined earlier.

init array(Name) undef @name Use perl intrinsic undef func-
tion.

random normal (re-
turn array,item cnt,seed,av,std dev)

@return array=&random normal
($item cnt,$seed,$av,$std dev)

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random beta (re-
turn array,item cnt,seed,aa,bb)

@return array=&random beta
($item cnt,$seed,$aa,$bb) NOTE:
Both $aa and $bb MUST be greater
than 1.0E-37.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random gamma (re-
turn array,item cnt,seed,a,r)

@return array=&random gamma
($item cnt,$seed,$a,$r) NOTE:
Both $a and $r MUST be positive.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random exponential (re-
turn array,item cnt,seed,av)

@return array=&random exponential
($item cnt,$seed,$av) NOTE: $av
MUST be non-negative.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random poisson (re-
turn array,item cnt,seed,mu)

@return array=&random poisson
($item cnt,$seed,$mu) NOTE: $mu
MUST be non-negative.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random chi (re-
turn array,item cnt,seed,df)

@return array=&random chi
($item cnt,$seed,$df) NOTE:
$df MUST be positive.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random noncentral chi (re-
turn array,item cnt,seed,df,nonc)

@return array=&random noncentral chi
($item cnt,$seed,$df,$nonc) NOTE:
$df MUST be at least 1 and $nonc
MUST be non-negative.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

NOT IMPLEMENTED IN
CAPA

@return array=&random f
($item cnt,$seed,$dfn,$dfd) NOTE:
Both $dfn and $dfd MUST be
positive.

New to LON-CAPA

9 BRIDGE TASK 74

CAPA Functions LON-CAPA Differences (if any)
NOT IMPLEMENTED IN
CAPA

@return array=&random noncentral f
($item cnt,$seed,$dfn,$dfd,$nonc)
NOTE: $dfn must be at least 1,
$dfd MUST be positive, and $nonc
must be non-negative.

New to LON-CAPA

NOT DOCUMENTED IN
CAPA

@return array=&random multivariate normal
($item cnt,$seed,\@mean,\@covar)
NOTE: @mean should be of length
p array of real numbers. @covar
should be a length p array of
references to length p arrays of real
numbers (i.e. a p by p matrix.

Note the backslash before the
@mean and @covar arrays.

NOT IMPLEMENTED IN
CAPA

@return array=&random multinomial
($item cnt,$seed,@p) NOTE:
$item cnt is rounded with int() and
the result must be non-negative.
The number of elements in @p must
be at least 2.

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random permutation
($seed,@array)

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random uniform
($item cnt,$seed,$low,$high)
NOTE: $low must be less than
or equal to $high.

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random uniform integer
($item cnt,$seed,$low,$high)
NOTE: $low and $high are both
passed through int(). $low must be
less than or equal to $high.

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random binomial
($item cnt,$seed,$nt,$p) NOTE:
$nt is rounded using int() and the
result must be non-negative. $p
must be between 0 and 1 inclusive.

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random negative binomial
($item cnt,$seed,$ne,$p) NOTE:
$ne is rounded using int() and the
result must be positive. $p must be
between 0 and 1 exclusive.

New to LON-CAPA

9 Bridge Task

Bridge Tasks (BTs) are open-ended, performance-based assessments. BTs are based on a
mastery-model of assessment and evaluated on a pass-fail basis. You may use BTs in a
variety of ways, from supporting the scoring of a final project, to individual lab assignments.
See Introduction to Bridge Task 9.1) for a more in-depth explanation to Bridge Tasks. The

9 BRIDGE TASK 75

main features of a bridge task (9.2) section gives the differences between BTs and other
assessments.

An author creates a bridge task either by writing the XML code or by using the edit
mode and publishing it. A course coordinator must then place the Bridge Task resource in
his/her course’s document list. The section on Bridge Task Creation (9.3) describes how to
author as well as set up these Bridge Tasks.

Once the bridge task is created and published, the course coordinator must insert the
resource in the course’s document list (See Setting Up a Bridge Task 9.6). The course
coordinator may also create slots to limit the place/time the bridge task may be opened
(See Using Slots in Bridge Task 9.6.1). This resource may also be placed inside conditionals
resources so that it is accessible only after a particular condition has been met (see Bridge
Task and Conditional Resources 9.6.2).

Once the course coordinator has set up the Bridge Task the student is able to open and
use the bridge task. A Bridge Task handin process using portfolio files may be used by the
instructors or students if they wish (See Handing In Bridge Task Files 9.7)..

9.1 Introduction to Bridge Task

Bridge tasks consist of one or more individual tasks that describe what the student is to
do, usually in the form of a problem to solve. LON-CAPA supports the creation of multiple
versions of each task, so that each student may receive a mix of randomly assigned tasks
to perform. Students use LON-CAPA to view the bridge task. LON-CAPA supports the
scheduling of BTs to restrict access by IP address range and to allow students to schedule
slots of time to take a BT.

When students complete a BT, they upload files they have created for grading. Files are
uploaded using LON-CAPA’s portfolio system.

LON-CAPA supports the creation of scoring rubrics associated with each individual
task to guide graders and ensure inter-rater reliability among multiple graders in a course.
Instructors specify criteria to assign an overall score to a BT based on the scores of the
individual rubrics.

BTs are used in Michigan State University’s CSE 101 course. The course is designed to
teach computer competencies by having students solve problems using a variety of computer
software (MS-Word, MS-Excel, World Wide Web, and MS Access). In CSE 101, BTs are
used for summative assessment, the majority of students’ grades are based upon the BTs.
Here, students must successfully pass a BT before attempting the next BT. A student’s
final course grade is based on the highest level BT passed. The CSE 101 class is quite
large, approximately 2000 students per semester. Students may take up to one BT per week;
typically there are over 14,000 BTs administered per semester. Thus there is a need to quickly
and accurately access students. LON-CAPA successfully supports the load requirements.

9.2 Bridge Task Features

There are many ways in which BTs differ from other assessments.

1. Multiple Versions. There are multiple versions of a BT. A person taking a BT may
receive a different version than the person taking the same BT sitting next to him
or her. To create BTs that have different versions, the instructors who created the

9 BRIDGE TASK 76

BT will create multiple sub-questions. The BT engine then chooses one of the sub
questions and gives that sub question to the student, thus creating multiple versions.

2. Essay/task based. Bridge task questions open-ended. Users create files which they
upload and submit to the system.

3. Rubric-Based Grading. Each question in a bridge task has scoring rubrics, criteria,
associated with them. These criteria are used as the basis of grading. The grading
page provides the criteria checklist on which the grader enters whether a student passes
or fails each criterion. This ensures inter-rater reliability among multiple graders.

4. Mandatory and Optional Criteria. Some criteria can be made mandatory, that is
a student will fail if the student does not pass that criteria. Some criteria are optional
and the student must pass a certain number of these optional criteria. Criteria are
associated with questions, which can also be made optional or mandatory. LON-CAPA
calculates whether a student has passed or fail based on the number of mandatory and
optional questions the student has passed.

5. Automatic Bookkeeping. The system calculates whether the student has passed a
BT or not and records it into the database. The system stores

• a complete record of the BT each student received

• when each student’s BT was administered

• the BT instance

• the files the student turned in

• the associated grading criteria

• the grading results (and history of grading, including grader ID)

6. Sequential Bridge Tasks. The system can be set in such a way that a student can
only take a certain bridge task after passing the previous bridge task on the list. This
is done using conditionals in LON-CAPA. There are other ways to use conditionals
and bridge tasks to customize the usage of bridge tasks in a course.

7. Slots. Slots can be created to relate students with time and location. This allows
control of where and when a student can take a bridge task.

8. Proctor Authentication. Slots also allow a particular proctor to be in a particular
location for a bridge task. Each student who is scheduled to take the bridge task must
be authenticated by the proctor.

9.3 Creating Bridge Task

There are multiple steps for creating a bridge task and setting the bridge task up so that the
students is able to use it. The flow of the bridge task creation process is shown in figure 26.

There are two ways of creating the bridge task. The first method is to directly edit the
XML file being used (See Bridge Task XML Editing 9.4). The second method is to use the
LON-CAPA online edit mode (See Bridge Task Mode Editing 9.5).

9 BRIDGE TASK 77

Figure 26: Bridge Task creation flowchart

Once the bridge task is created and published, the course coordinator must insert the
resource in the course’s document list (See Setting Up Bridge Task 9.6). The course coordi-
nator may also create slots to allow for multiple place/time the bridge task may be opened
or to allow for multiple separate attempts at the bridgetask (See Using Slots in Bridge Task
9.6.1). As with any resource, the map it is in may use conditionals to control access to the
resources based on other information in the course. (For example, the section of a user, the
passing of a prior bridgetask, etc.)

9.4 Bridge Task XML Editing

The LON CAPA .task format is an XML file used directly by LON CAPA. XML is a markup
language, much like HTML. A primer on XML is given in section 9. An XML file contains
elements in tags, and elements may contain attributes. The syntax, spelling (including
capitalization) of the XML file must be exact, otherwise the XML file will generate errors.

The online editor for the .task format is discussed in the next section. This section
describes creating the .task file by simply using a text editor such as Notepad.

The .task format consists of four parts:

• The header, which contains information about the file itself. The header can be copied
from this documentation as is (see .Task Headers 9.4.1)

• Parameter information. This part consists of the possible values for various parameters
in the Bridge Task (see .Task Parameter and Variable 9.4.2)

• Questions section. This part consists of the actual text the user sees as well as all
criteria and questions (see .Task Question 9.4.3)

9 BRIDGE TASK 78

• Footer section. This part consists of the actual text the user sees as well as all criteria
and questions (see .Task Finishing Up 9.4.4)

Once all parts are created, the author must publish the file so that it is accessible by
course coordinators (see .Task Finishing Up 9.4.4).

9.4.1 .Task Headers

The root node of the .task format is the task element, which is an XML element written as
follows:

<Task OptionalRequired=’0’>
The Task element signifies that this is a bridge task. The OptionalRequired is a manda-

tory attribute, and the value (0 in this case) determines how many optional questions the
student must pass.

9.4.2 .Task Parameter and Variable

To create difference versions of Bridge Tasks for each student, parts of the questions are
defined using variables. Each variable contains multiple instances of possible values and
LON-CAPA randomly selects an instance to give to the student.

All variables are placed inside a Setup element. Each setup element has an id attribute
which contains the name of the variable. The possible instances or values of those variables
are placed inside the setup element inside an Instance tag. Each Instance element has two
mandatory attributes, the OptionalRequired attribute which should be set to 0, and the
unique id of that instance. The value of the id attribute can be any text as long as it is
unique throughout the document.

The actual data of the instance is placed inside InstanceText tags. Currently the instance
data is created with a loncapa/perl script. In this script the parameters of the variable are set.
The syntax to set the parameter of a variable is ’$variableName {fieldname} = ”fieldValues”’.
The variable name is taken from the attribute id from the Setup element, the field name is
the name of the parameter the author sets, and the fieldValue is simply the value of the field.
The first parameter that must be set is the instance field, with the value being an identifier
of the instance.

The example below shows a portion of the bridge task XML file. This portion should be
placed inside the task element :Lines between <!−− and −− > or /∗ and ∗/ are comments
and should not be typed into the editor.

<!-- Create a variable named entity Subject -->

<Setup id="entitySubject">

<!-- The first instance. With id instanceHarry -->

<Instance OptionalRequired="0" id="instanceHarry">

<!-- The parameters for this instance -->

<InstanceText>

<script type=’loncapa/perl’>

/* The first line must be the instance id */

$entitySubject{instance} = "instanceHarry";

9 BRIDGE TASK 79

/* The two parameters. Personname = Harry and place=zoo */

$entitySubject{personname} = "Harry";

$entitySubject{place} = "zoo";

</script>

</InstanceText>

</Instance>

<!--End of instanceHarry-->

<!-- The second instance. With id instanceBetty -->

<Instance OptionalRequired="0" id="instanceBetty">

<!-- The parameters for this instance -->

<InstanceText>

<script type=’loncapa/perl’>

/* The first line must be the instance id */

$entitySubject{instance} = "instanceBetty";

/* The two parameters. Personname = Betty and place=park */ $entitySubject{personname} =

$entitySubject{place} = "park";

</script>

</InstanceText>

</Instance>

<!--End of instanceBetty-->

</Setup>

The example above describes a variable question. It has two different possible val-
ues for the entity ”subject”, Harry and zoo or Betty and park. Variables can be placed
inside the questions by using the variable name and field name. The first line <Setup
id=”entitySubject”> creates a variable named entitySubject (based on the id attribute of
this line).

The first instance of this variable is shown from lines 2 to 10. Line two <Instance Option-
alRequired=”0” id=”instanceHarry”> marks the beginning of the instance element named
instanceHarry (based on the id attribute). The OptionalRequired is given a value of 0.
Lines 3-9 determine the actual value of this variable. Lines 3 and 4 must be typed as shown.
Lines 5-7 define the instance properties, which must be of the form $ <variable name>
{<property name> } = <value>. The first line of the property must be the instance prop-
erty (see line 5 of example), with the value being the id of the instance. Other lines (6-7)
can be used for any attributes you wish to define. The closing </script>, </InstanceText>
and </Instance> tags must be typed as shown.

Line 12-21 shows the second instance with the same rules as the first instance. Line 23
</Setup> gives the closing Setup tag which must be as shown.. The example of the usage
of this variable inside the question is this text:

This is a test question. $entitySubject{personname} went to the $entitySubject{place}.
.

The LON-CAPA engine will replace any instance of $<variable name> (<property name>)
with the correct value, depending on the randomly chosen instance.

Based on this code, two different questions are possible:

9 BRIDGE TASK 80

1. This is a test question. Harry went to the zoo

2. This is a test question. Betty went to the park

9.4.3 .Task Questions and Criteria

The task description should be divided into questions. Questions can also be divided into
sub-questions. A question or sub-question must have one or more criteria that are the scoring
rubrics used to evaluate that question. A task may also have a criteria. Graders use these
criteria to evaluate student work Both questions and criteria are interspersed within the task
description, placed where students see them when reviewing their graded bridge task.

Questions are created by using the Question tag. Each question must have a unique id
attribute which identifies the question, the value of the id attribute is any text that is unique
in the document. Each question must also have the Mandatory attribute which can be set
to ”Y” if the question is mandatory or ”N” otherwise. Finally the question may also have
a OptionalRequired attribute, which determines how many optional criteria students must
pass to pass the question.

The question element will have the actual text of the question. The questions are created
inside the QuestionText element. The question descriptions are placed inside the file by
simply typing the text. The text can be marked up to have various formatting. The mark
up language used is simple HTML.

Criteria are created using the Criteria tag. The attributes for the criteria tag are similar
to the attributes for the questions tag. Criteria tags have id attributes as well as Mandatory
attributes. Like for the question tag, the value of the id attribute is any text that is unique
in the document, and the Mandatory attribute (values ”Y” or ”N”) determines whether the
criteria is mandatory or not. Criteria tags do not have OptionalRequired attributes. The
criteria description is created inside the CriteriaText element and can be formatted the same
way as the formatting of the questions (using HTML).

The following is an example of a question and criteria element. Question elements are
placed inside the task element or inside other question elements. Text between <! − −and
−− > are comments and should not be typed into the editor.

<!-- Beginning of question element with id q.testquestion. A mandatory question where the

<Question id=’q.testquestion’ Mandatory=’Y’ OptionalRequired=’1’>

<!--The text of the question -->

<QuestionText>

Some test explanation

<!--A mandatory criteria with the id of ’criteria.overall.handin’. This criteria will not

<Criteria id=’criteria.overall.handin’ Mandatory=’Y’>

<!--The text of the criteria-->

<CriteriaText>

Criteria text 1

<!--Grader Notes are not shown to the students at all -->

<GraderNote>

This part cannot be seen by students but is used to give additional info to the grader to

</GraderNote>

</CriteriaText>

</Criteria>

9 BRIDGE TASK 81

<!--End of the criteria -->

<!--An optional question named q.question1 -->

<Question Mandatory=’N’ id=’q.question1’ OptionalRequired=’0’>

<QuestionText>

The actual test question

<!--A mandatory criteria -->

<Criteria id=’criteria.question1’ Mandatory=’Y’>

<CriteriaText>

Criteria text 2

</CriteriaText>

</Criteria>

</QuestionText>

</Question>

<!--End of question q.question1-->

<!--Some more question text -->

Instructions to the student on submitting files

</QuestionText>

</Question>

<!--End of question q.testquestion-->

The question that the students will see is:
”Some test explanation

The actual test question
Instructions to the student on submitting files
”

Any text inside a QuestionText element (lines 2, 14) and not inside a criteria element
will be shown to the users. This example has one question, and one optional sub-question.
The question element is given in line 1, the id of the question being ’q.testquestion’, it is a
mandatory question (Mandatory=’Y’) and it requires that 1 optional question/criteria be
passed (OptionalRequired=’1’). The sub-question is given in line 13, named ’q.question1’,
is not mandatory and has no optional questions or criteria that is required to be correctly
answered.

The example above shows a code for the creation of criteria. There are 2 criteria in
the above question (line 4 and 16). Each criteria has a name (criteria.question1 and crite-
ria.overall.handin) which are both mandatory (the attribute Mandatory is set to ’Y’). The
text of the criteria is given inside the CriteriaText element inside each CriteriaElement. The
student will never see the criteria when the student is taking the test. The grader will see
this on his/her screen:

”Criteria text 1. Grader Note: This part cannot be seen by the students but is used to
give additional info to the grader to help evaluating the criteria.
Pass Fail
Comment:

9 BRIDGE TASK 82

Criteria text 2.
Pass Fail
Comment:

”
When the bridge task is graded the student will see both the questions and the criteria

in his space. Anything inside the GraderNote element (line 7) is not shown to the student.
”Some test explanation

Criteria text 1
Pass
The actual test question
Criteria text 2.
Pass
Instructions to the student on submitting files
”

9.4.4 .Task Finishing Up

Once all questions are written, the file must be closed with the </Task> tag. The file must
be saved with a .task extension then placed into a LON CAPA author’s folder. To upload
the file simply go to the construction space and simply upload the new file using the upload
new document button. Once the file is uploaded to LON CAPA, the author can publish the
file so that the domain coordinator will be able to use the file. To do this select publish (or
re-publish) in the select action combo box next to the file name.

The LON CAPA interface allows you to view the bridge task from different point of
views. You can see it from the student’s view, the grader view, or the student’s view after
feedback:

1. From the list of files authored, click on the bridge task that has just been created/edited.
A pull-down menu with the label ”Problem Status” is located just above the question

2. Select ”Answerable” to see the original view, ”Criteria Grading” to see a grader view,
and ”Show Feedback” to see the feedback view .To see the feedback view properly, you
must have graded the student with the grader view. Once you have graded using the
feedback view however, the answerable view will be similar to the feedback view.

3. To reset the view a ”Reset Submissions” button is provided.

9.5 Bridge Task Edit Mode

Another way of creating Bridge Task is via the edit mode. The edit mode allows authors
to create resources (including Bridge Tasks) online. The basic idea of the this editor is the
author inserts and deletes different section types into the file to build the bridge task.

If a task file has already been created, click on the file name followed by the ”Edit”
button to open the file in the colorful editor.

If a task file needs to be created:

9 BRIDGE TASK 83

1. Enter the file name in the area ”Create a new directory or LON-CAPA document”
with the combo box at the left of this set to ”New File”. The file name must have a
.task extension.

2. At the second screen, press continue to create a new task. At the third screen, select
the blank task template and press the ”Create task” button to create this blank task.

3. To go into the the edit mode, press the ”Edit” Button.

The edit mode allows you to insert appropriate sections of a document at certain prede-
termined places. For example, in a bridge task document, you can insert a question section,
a criteria section, and an introductory section. To insert a section, find a drop down box
with the label ”Insert”, and select the section to insert. Then click on the ”Submit Changes
and Edit” button. The section you selected will be inserted in place of the pull down menu.

Additional insert pull-downs will show up allowing you to insert sections before, inside,
and after other sections. The choices on the pull down menu may differ depending on the
location of the insert pull-down. For example, the insert pull down inside a question section
contains question information; this option is not available anywhere else.

In the edit mode, you will see is an insert button and a optional task button. You
will need to enter the number of optional tasks/questions that the student need to answer
correctly to pass the bridge task. You can leave this field empty until after you have finished
writing the whole bridge task.

This document discusses important sections needed to create a bridge task. These sec-
tions can be created in any order.

1. The introductory and closing information 9.5.1

2. Variables 9.5.3

3. Question and criteria 9.5.2

Once the document has been created, the author must publish the bridge task so it
becomes available (See Edit Mode Finishing Up 9.5.4)

9.5.1 Introductions

The introductory information and closing information are just text that are shown to the
students but are not part of any questions. The introductory information should be placed
at the beginning of the bridge task and the closing information should be placed at the end
of the bridge task.

To insert these sections:

1. Select ”Introductory Information” or ”Closing Information” in the insert pull-down
menu and press the submit button.

2. A new section appears with a text box inside it. You may enter any text inside the
text box and the text may be formatted with HTML tags. Everything inside the text
box will be shown to the students as introductory or closing text.

9 BRIDGE TASK 84

Figure 27: Bridge Task question creation screenshot

9.5.2 Questions and Criteria

The task description should be divided into questions. Questions can also be divided into
sub-questions. A question or sub-question must have one or more criteria that are the scoring
rubrics used to evaluate that question. A task may also have a criteria. Graders use these
criteria to evaluate student work Both questions and criteria are interspersed within the task
description, placed where students see them when reviewing their graded bridge task.

Figure 27 shows a screenshot of the question creation page. To create a question:

1. Select ”Question” in the main insert pull-down (circled as 1).

2. Press the submit changes and edit button.

3. In this question create a unique id which can be any kind of text (in circle 3).

4. Set whether a student must pass this question by setting the value of ”Passing is
Mandatory” to ”yes” (circle 4) or whether this question is optional by setting the
value to ”no”.

5. Set the number of optional subquestions/criteria that the students must get correct in
order to pass this question. You can also wait until later to fill this in.

6. Create the question information by choosing Question information in the insert pull-
down (circled as 2) and pressing the submit button.

9 BRIDGE TASK 85

Figure 28: Bridge Task criteria creation screenshot

7. A text box should appear (circle 6) and you can insert any text in this text box.
Anything that is typed in this text box will appear to the student as part of the
question. HTML tags can also be used to format the text in the text box. Subquestions
can be added by inserting a new question (circle 2).

To add a criteria (see Figure 28):

1. Instead of choosing ”Question” in the insert pull down, select ”Question Criteria”
(circled as 1). Pressing the submit button will bring up the Question criteria as well
as the criteria information where you can write the criteria (Circled 3). The criteria is
shown to the student only when the student is reading his/her feedback. The criteria
is also shown to the grader in order for the grader to be able to grade the student
submission.

2. In the criteria block, first create a unique id for this criteria (any text) (circle 1).

3. Specify whether a criteria is mandatory or not, this is set in the Passing is mandatory
pull-down similar to that of the question (circle 2).

4. Text in the text block (circle 4) is shown as the criteria. The text can be formatted
with HTML.

5. You can also insert a grader note which will only be shown to the user. To do this
select ”Text to display to grader” in the insert pull down menu of circle number 3.

9 BRIDGE TASK 86

Figure 29: Bridge Task variable creation screenshot

9.5.3 Parameter and Variable

To create difference versions of Bridge Tasks for each student, parts of the questions are
defined using variables. Each variable contains multiple instances of possible values and
LON-CAPA randomly selects an instance to give to the student. Figure 29 shows a screenshot
of this process.

To create a variable:

1. Choose ”Setup ...” in the insert pull-down menu (circled 1 in figure).

2. Press the Submit Changes and Edit just above the work space.

3. A new box should appear with the label ”Setup ...”. In this box, fill out the id box
(circled 3) with any text that is unique to unique to the document. This id is the name
of the variable and will be used when creating the values for the variable.

4. The setup box has an insert pull-down menu next to the label (circled 2), select ”Spe-
cific Question Instance” in this pull down menu, then again press the Submit Changes
and Edit button.

5. This creates one single instance of a set of possible values. For each instance created,
a new ”Specific Question Instance” must be created.

6. Right now a box should appear inside the ”Setup... ” box with the label ”Specific
Question Instance”. Insert a unique id for that instance which can be any unique text

9 BRIDGE TASK 87

(circled 4). This id is the instance name and is used as one of the property of the
variable.

7. In the question instance block, select ”Information for the Instance” in the insert pull
down (circled 5). Again press submit button.

8. Add a new script (circled 6) in the insert pull down. A new text block should appear.

9. In this text box, a perl script will be created (circled 7). A set of parameters for this
variable is added. The syntax to set the parameter of a variable is ’$variableName
{fieldname} = ”fieldValue”’. The variable name is taken from the id field of the Setup
block, thefield name is the name of the parameter the author sets, and the fieldValue
is simply the value of the field. The first parameter that must be set is the instance
field, with the value being an identifier of the instance (which is the id of the specific
question instance block).

The example below shows two instances of this script for the variable entitySubject with
two instances, ’instanceHarry’ and ’instanceBetty’.

The first instance (instanceHarry) is:

$entitySubject{instance} = "instanceHarry";

$entitySubject{personname} = "Harry";

$entitySubject{place} = "zoo";

The second instance (instanceBetty) is:

$entitySubject{instance} = "instanceBetty";

$entitySubject{personname} = "Betty";

$entitySubject{place} = "park";

The example above describes a variable question. It has two different possible values
for the entity ”subject”, Harry and zoo or Betty and park. Variables can be placed inside
the questions by using the variable name and field name. The example of the usage of this
variable inside the question is this text:

This is a test question. $entitySubject{personname} went to the $entitySubject{place}.
.

The LON-CAPA engine will replace any instance of $<variable name> (<property name>)
with the correct value, depending on the randomly chosen instance.

Based on this code, two different questions are possible:

1. This is a test question. Harry went to the zoo

2. This is a test question. Betty went to the park

9.5.4 Edit Mode Finishing Up

Once the construction is complete, click on the ”Submit Changes and View” button. Click
on list to list the current author’s directory. The author should now publish the file so that
the domain coordinator will be able to use the file. To do this select publish (or re-publish)
in the select action combo box next to the file name.

The LON CAPA interface allows you to view the bridge task from different point of
views. You can see it from the student’s view, the grader view, or the student’s view after
feedback.

9 BRIDGE TASK 88

1. From the list of files authored, click on the bridge task that has just been created/edited.

2. A pull-down menu with the label ”Problem Status” is located just above the question.
select ”Answerable” to see the original view, ”Criteria Grading” to see a grader view,
and ”Show Feedback” to see the feedback view.

3. To see the feedback view properly, you must have graded the student with the grader
view.

4. Once you have graded using the feedback view however, the answerable view will
be similar to the feedback view. To reset the view a ”Reset Submissions” button is
provided.

9.6 Setting Up a Bridge Task

The first step in making bridge tasks available to students is to include it in the document
space. To do this:

1. Enter the course coordinator space for the course

2. Go to ”Course Documents” and click on import. This page gives the list of files that
you have created.

3. Select the bridge task and press import to insert the file to the list of documents.

4. After importing the document, you must re-initialize the course.

Now the assignment is in the list of documents, but it is not available for students. There
are two ways of making bridge tasks available to students. One method is by using slots (the
default method), which restrict the bridge task document to open at certain time/place only.
The other method allows students to take bridge task like any other Lon-CAPA assignments,
that is at any time they want within opening and closing dates. This method does not restrict
the access to particular computers or rooms. Any student in the course may open the BT.

If you want to use slots, first create the slots (See Bridge Task and Slots 9.6.1). Once
the BT is imported (and slots are created) go back to the document list and click on the
bridge task resource, this should take you to a page that shows the resource content. If you
are not using slots, click on the bridge task resource. Whether using or not using slots, click
on PPRM (a button on the top menu) to modify parameters for this resource.

Set the opening date and the due date (if any) in the for resource column. To do this,
click on the * in the in course for resource column. A pop up should appear. Enter the date
you want the resource to be available and click the store link.

If you are using slots:

1. Change the ”Use slot based access controls” parameter to ”Yes”.

2. Change the ”Slots of availability” parameter for the course in for resource column to
the name of the slot that you created. You may need to change the input type (the
combo box at the top of the popup) to ’String Value’ instead of ’default’.

If you are not using slots:

9 BRIDGE TASK 89

1. Change the ”Use slot based access controls” parameter to ”no” by clicking on the * in
the for resource column

The bridge task should now be available to students. To see the BT in the student view,
switch to a student role in your course. Navigate contents and click on the resource.

9.6.1 Bridge Task and Slots

To restrict when and where BTs can be taken, the slots feature of Lon-Capa is used. Slots
allow the instructors to specify the room, the time, the students that can take the Bridge
Tasks, and finally any proctors that will authenticate the students.

For information about creating slots see the section on Slots (??).

9.6.2 Bridge Task and Conditional Resources

It is possible to configure bridge tasks such that only when a student passes a Bridge Task
does the next Bridge Task appear to the student. This feature is useful in such cases as
Bridge Tasks are related to one another, and the results of one Bridge Task is needed for the
next Bridge Task.

To create configure bridge tasks these way, a sequence page must be created. A resource
author starts at his/her construction space (Main menu: CSTR). Once in the construction
space, the author create a new assembled sequence. See 5 for a more concise reference on
condition and sequences.

The author must create various conditionals to determine which resources to show. The
easiest way to do this is by using advanced edit. The advanced edit visualizes the various
conditions and resources. This interface needs popups, so make sure popups are enabled in
the browser.

In the main starting view of the advanced edit, there are two squares, marked start and
end respectively. Start by creating a link between the start square and the end square. To
do this click on the start square (on the row under the text start), select ”Link Resource”,
then click on the end square. A link is now created between the start and the end boxes.

Once a link is created the author adds resources and conditions. Click on the link and
then choose insert resource into link. This allows the placement of a resource such as a
bridge task into the sequence. Once the resource is placed into the link, the author should
create a mapalias. To do this, select the resource, then click on set parameters, and change
the value of Custom Parameter to an alias.

Under each square is an area of the same color as the square, these areas can be used to
create conditionals to get to the next resource to the sequence. This document only discusses
using conditionals to block access to the next resource (including Bridge Tasks).

Add conditionals by clicking on the area just under the squares. A popup window will
appear with a condition box and some options. The condition box allows the author to
enter a variety of different conditions. To block access to the next resource, select the second
option ”Blocking this link if false”.

The conditions used will be :

&EXT(’user.resource.resource.0.awarded’,’<alias of resource>’) eq ’1’

<alias of resource> should be changed to the alias set for the previous resource that the
student needs to pass before the next resource is unblocked. If the student has not passed a

10 APPENDIX: SYMBOLS IN TEX 90

particular homework/problem/bridge task, the value of user.resource.resource.0.awarded is 0
otherwise the value is 1. This line checks whether the value of user.resource.resource.0.awarded
for that resource is equals to 1, if not the link is blocked and the next resources are not shown
to the user.

9.7 Handing In Bridge Task Files

After a student finishes creating the Bridge Task, the student must hand in the files. There
are many ways to do this, students can email the files necessary, or students can email a link
to the instructor that shows where his files are. LON-CAPA provides a way to upload file
using the portfolio. The portfolio is a space given to each student which can contain files
and is shareable.

The process of handing in files consists of:

1. Upload files into portfolio

2. Select the files to be submitted

3. Submit the files

At the end of every bridge task there will be a box to submit files in the portfolio for
grading. When the student click on the link ”select portfolio files”, a new window is opened
showing the content of the student’s portfolio. The student can create directories in the
portfolio and upload files using the upload file buttons.

Once the files that are needed are uploaded, the student select (by checking the checkbox
next to the filenames) of all files that he needs to submit to the instructor. Once all files
needed are checked off, the student needs to press the ”select checked files and close window”
button.

By pressing the close window button, the student’s portfolio window should close, and
the student should see his or her Bridge Task Page. The text field in the upload files into
portfolio should contain the list of names. The student must then press ’submit answer’ to
submit the answer to be graded.

If the student needs to resubmit the file, the student must repeat the process and check
off all the files (not only new files) that needs to be submitted. Once a file is submitted, the
student may not overwrite or delete the files.

10 Appendix: Symbols in Tex

10.1 Greek Symbols

If you are viewing this online, copy and paste the text from any of the right columns into
your text area to get the symbol on the left.

10 APPENDIX: SYMBOLS IN TEX 91

Symbol HTML character entities Copy this column
α α or α <m>α</m>

β β or β <m>β</m>

γ γ or γ <m>γ</m>

Γ Γ or Γ <m>Γ</m>

δ δ or δ <m>δ</m>

∆ Δ or Δ <m>Δ</m>

ǫ ε or ε <m>ϵ</m>

ε <m>ε</m>

ζ ζ or ζ <m>ζ</m>

η η or η <m>η</m>

θ θ or θ <m>θ</m>

ϑ ϑ or ϑ <m>ϑ</m>

Θ Θ or Θ <m>Θ</m>

ι ι or ι <m>ι</m>

κ κ or κ <m>κ</m>

λ λ or λ <m>λ</m>

Λ Λ or Λ <m>Λ</m>

µ μ or μ <m>μ</m>

ν ν or ν <m>ν</m>

ξ ξ or ξ <m>ξ</m>

Ξ Ξ or Ξ <m>Ξ</m>

π π or π <m>π</m>

̟ ϖ or ϖ <m>ϖ</m>

Π Π or Π <m>Π</m>

σ σ or σ <m>σ</m>

ς <m>ς</m>

Σ Σ or Σ <m>Σ</m>

τ τ or τ <m>τ</m>

υ υ or υ <m>υ</m>

Υ Υ or Υ <m>Υ</m>

φ φ or φ <m>ϕ</m>

ϕ <m>φ</m>

Φ Φ or Φ <m>Φ</m>

χ χ or χ <m>χ</m>

ψ Ψ or ψ <m>ψ</m>

Ψ Ψ or Ψ <m>Ψ</m>

ω ω or ω <m>ω</m>

Ω Ω or Ω <m>Ω</m>

ρ ρ or ρ <m>ρ</m>

̺ <m>ϱ</m>

10.2 Other Symbols

If you are viewing this online, copy and paste the text on any of the right columns into your
text area to get the symbol on the left.

10 APPENDIX: SYMBOLS IN TEX 92

Symbol HTML entity Copy this column
± ± or ± <m>\pm</m>

× × or × <m>\times</m>

÷ ÷ or ÷ <m>\div</m>

· · or · <m>\cdot</m>

⋆ <m>\star</m>

◦ ° or °
• • <m>\bullet</m>

† <m>\dag</m>

‡ <m>\ddag</m>

† † <m>\dagger</m>

‡ ‡ <m>\ddagger</m>

c© © or © <m>\copyright</m>

≤ ≤ or ≤ <m>\leq</m>

≥ ≥ or ≥ <m>\geq</m>

6= <m>\neq</m>

≪ <m>\ll</m>

≫ <m>\gg</m>

≃ <m>\simeq</m>

⊥ ⊥ or ⊥ <m>\perp</m>

‖ <m>\parallel</m>

← ← or ← <m>\leftarrow</m>

⇐ ⇐ or ⇐ <m>\Leftarrow</m>

→ → or → <m>\rightarrow</m>

⇒ ⇒ or ⇒ <m>\Rightarrow</m>

↑ ↑ or ↑ <m>\uparrow</m>

⇑ ⇑ or ⇑ <m>\Uparrow</m>

↔ ↔ or ↔ <m>\leftrightarrow</m>

⇔ ⇔ or ⇔ <m>\Leftrightarrow</m>√
√ or √ <m>\surd</m>

∂ ∂ or ∂ <m>∂</m>∑
∑ or ∑ <m>\sum</m>∫
∫ or ∫ <m>\int</m>

∞ ∞ or ∞ <m>∞</m>

